Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919090

RESUMO

In this work, direct irradiation by a Ti:Sapphire (100 fs) femtosecond laser beam at third harmonic (266 nm), with a moderate repetition rate (50 and 1000 Hz), was used to create regular periodic nanostructures upon polystyrene (PS) thin films. Typical Low Spatial Frequency LIPSSs (LSFLs) were obtained for 50 Hz, as well as for 1 kHz, in cases of one spot zone, and also using a line scanning irradiation. Laser beam fluence, repetition rate, number of pulses (or irradiation time), and scan velocity were optimized to lead to the formation of various periodic nanostructures. It was found that the surface morphology of PS strongly depends on the accumulation of a high number of pulses (103 to 107 pulses) at low energy (1 to 20 µJ/pulse). Additionally, heating the substrate from room temperature up to 97 °C during the laser irradiation modified the ripples' morphology, particularly their amplitude enhancement from 12 nm (RT) to 20 nm. Scanning electron microscopy and atomic force microscopy were used to image the morphological features of the surface structures. Laser-beam scanning at a chosen speed allowed for the generation of well-resolved ripples on the polymer film and homogeneity over a large area.

2.
Nanomaterials (Basel) ; 7(10)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023374

RESUMO

This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photopatternable sol-gel TiO2. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar's cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.

3.
Mater Sci Eng C Mater Biol Appl ; 33(5): 2526-33, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623064

RESUMO

Biosourced or biodegradable polymers like poly(lactic acid) (PLA) are often base-material for tissue-engineered scaffolds. However, in most of the cases, their bioadhesion properties are not satisfactory. Since the adhesion is controlled both by roughness and surface chemistry, PLA films were textured by applying the breath figure procedure and, then, plasma-treated. Depending on physicochemical characteristics of the breath figure technique, nice hexagonal structures were obtained. Their surface properties, i.e. hydrophobic-hydrophilic balance were controlled by plasma modification. However, their surface decoration could be only preserved with some specific plasma parameters depending on the applied energy and also on the induced surface chemistry.


Assuntos
Ácido Láctico/química , Polímeros/química , Propriedades de Superfície , Microscopia Eletrônica de Varredura , Poliésteres , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...