Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629141

RESUMO

Numerous observations have supported the idea that various types of noncoding RNAs, including tRNA fragments (tRFs), are involved in communications between the host and its microbial community. The possibility of using their signaling function has stimulated the study of secreted RNAs, potentially involved in the interspecies interaction of bacteria. This work aimed at identifying such RNAs and characterizing their maturation during transport. We applied an approach that allowed us to detect oligoribonucleotides secreted by Prevotella copri (Segatella copri) or Rhodospirillum rubrum inside Escherichia coli cells. Four tRFs imported by E. coli cells co-cultured with these bacteria were obtained via chemical synthesis, and all of them affected the growth of E. coli. Their successive modifications in the culture medium and recipient cells were studied by high-throughput cDNA sequencing. Instead of the expected accidental exonucleolysis, in the milieu, we observed nonrandom cleavage by endonucleases continued in recipient cells. We also found intramolecular rearrangements of synthetic oligonucleotides, which may be considered traces of intermediate RNA circular isomerization. Using custom software, we estimated the frequency of such events in transcriptomes and secretomes of E. coli and observed surprising reproducibility in positions of such rare events, assuming the functionality of ring isoforms or their permuted derivatives in bacteria.


Assuntos
Escherichia coli , Espécies Introduzidas , Escherichia coli/genética , Reprodutibilidade dos Testes , RNA de Transferência/genética , Meios de Cultura , RNA
2.
FEMS Microbiol Lett ; 365(24)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376063

RESUMO

Recently, it has been found that bacteria secrete short RNAs able to affect gene expression in eukaryotic cells, while certain mammalian microRNAs shape the gut microbiome altering bacterial transcriptome. The involvement of bacterial RNAs in communication with other bacteria is also expected, but has not been documented yet. Here, we compared the fractions of extremely short (12-22 nucleotides) RNAs secreted by Escherichia coli grown in a pure culture and jointly with bacteria of the Paenibacillus genus. Besides fragments of rRNAs and tRNAs, abundant in all samples, secreted oligonucleotides (exoRNAs) predominantly contained GC-rich fragments of messenger and antisense RNAs processed from regions with stable secondary structures. They differed in composition from oligonucleotides of intracellular fraction, where fragments of small regulatory RNAs were prevalent. Both fractions contained RNAs capable of forming complementary duplexes, while for exoRNA samples a higher percentage of 3΄-end modified RNAs and different endonuclease cleavage were detected. The presence of a cohabiting bacterium altered the spectrum of E. coli exoRNAs, indicating a population-dependent control over their composition. Possible mechanisms of this effect are discussed.


Assuntos
Escherichia coli/metabolismo , RNA Antissenso/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Transporte Biológico , Escherichia coli/química , Escherichia coli/genética , Genoma Bacteriano , Conformação de Ácido Nucleico , RNA Antissenso/química , RNA Antissenso/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo
3.
J Bioinform Comput Biol ; 12(2): 1441006, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24712533

RESUMO

Seventy-eight promoter islands with an extraordinarily high density of potential promoters have been recently found in the genome of Escherichia coli. It has been shown that RNA polymerase binds internal promoters of these islands and produces short oligonucleotides, while the synthesis of normal mRNAs is suppressed. This quenching may be biologically relevant, as most islands are associated with foreign genes, which expression may deplete cellular resources. However, a molecular mechanism of silencing with the participation of these promoter-rich regions remains obscure. It has been demonstrated that all islands interact with histone-like protein H-NS--a specific sentinel of foreign genes. In this study, we demonstrated the inhibitory effect of H-NS using Δhns mutant of Escherichia coli and showed that deletion of dps, encoding another protein of bacterial nucleoid, tended to decrease rather than increase the amount of island-specific transcripts. This observation precluded consideration of promoter islands as sites for targeted heterochromatization only and a computer search for the binding sites of 53 transcription factors (TFs) revealed six proteins, which may specifically regulate their transcriptional output.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Ilhas Genômicas/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Sequência de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Ligação Proteica , Ativação Transcricional/genética
4.
J Bioinform Comput Biol ; 5(2B): 549-60, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17636861

RESUMO

Mapping of putative promoters within the entire genome of Escherichia coli (E. coli) by means of pattern-recognition software PlatProm revealed several thousand of sites having high probability to perform promoter function. Along with the expected promoters located upstream of coding sequences, PlatProm identified more than a thousand potential promoters for antisense transcription and several hundred very similar signals within coding sequences having the same direction with the genes. Since recently developed ChIP-chip technology also testified the presence of intragenic RNA polymerase binding sites, such distribution of putative promoters is likely to be a general biological phenomenon reflecting yet undiscovered regulatory events. Here, we provide experimental evidences that two internal promoters are recognized by bacterial RNA polymerase. One of them is located within the hns coding sequence and may initiate synthesis of RNA from the antisense strand. Another one is found within the overlapping genes htgA/yaaW and may control the production of a shortened mRNA or an RNA-product complementary to mRNA of yaaW. Both RNA-products can form secondary structures with free energies of folding close to those of small regulatory RNAs (sRNAs) of the same length. Folding propensity of known sRNAs was further compared with that of antisense RNAs (aRNAs), predicted in E. coli as well as in Salmonella typhimurium (S. typhimurium). Slightly lower stability observed for aRNAs assumes that their structural compactness may be less significant for biological function.


Assuntos
Mapeamento Cromossômico/métodos , Escherichia coli/genética , Genoma Bacteriano/genética , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica/genética , Sequência de Bases , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...