Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 88: 103163, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897092

RESUMO

Discoveries in the past decade of novel reactions, processes, and micro-organisms have altered our understanding of microbial nitrogen cycling in wastewater treatment systems. These advancements pave the way for a transition toward more sustainable and energy-efficient wastewater treatment systems that also minimize greenhouse gas emissions. This review highlights these innovative directions in microbial nitrogen cycling within the context of wastewater treatment. Processes such as comammox, Feammox, electro-anammox, and nitrous oxide mitigation offer innovative approaches for sustainable, energy-efficient nitrogen removal. However, while these emerging processes show promise, advancing from laboratory research to practical applications, particularly in decentralized systems, remains a critical next step toward a sustainable and efficient wastewater management.

2.
Nat Commun ; 11(1): 2058, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345973

RESUMO

Anaerobic ammonium oxidation (anammox) bacteria contribute significantly to the global nitrogen cycle and play a major role in sustainable wastewater treatment. Anammox bacteria convert ammonium (NH4+) to dinitrogen gas (N2) using intracellular electron acceptors such as nitrite (NO2-) or nitric oxide (NO). However, it is still unknown whether anammox bacteria have extracellular electron transfer (EET) capability with transfer of electrons to insoluble extracellular electron acceptors. Here we show that freshwater and marine anammox bacteria couple the oxidation of NH4+ with transfer of electrons to insoluble extracellular electron acceptors such as graphene oxide or electrodes in microbial electrolysis cells. 15N-labeling experiments revealed that NH4+ was oxidized to N2 via hydroxylamine (NH2OH) as intermediate, and comparative transcriptomics analysis revealed an alternative pathway for NH4+ oxidation with electrode as electron acceptor. Complete NH4+ oxidation to N2 without accumulation of NO2- and NO3- was achieved in EET-dependent anammox. These findings are promising in the context of implementing EET-dependent anammox process for energy-efficient treatment of nitrogen.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Espaço Extracelular/metabolismo , Anaerobiose , Eletroquímica , Eletrólise , Transporte de Elétrons , Oxirredução , Fatores de Tempo
3.
Microbiol Resour Announc ; 8(45)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699767

RESUMO

A draft genome sequence of Methanobacterium sp. strain 34x was reconstructed from the metagenome of an enriched electromethanogenic biocathode operated in a microbial electrosynthesis (MES) reactor. Methanobacterium sp. strain 34x has 68.98% nucleotide-level genomic similarity with the closest related methanogen available with a whole-genome assembly, Methanobacterium lacus strain AL-21. This genome will provide insight into the functional potential of methanogens at the biocathodes of MES systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...