Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer ; 129(11): 1672-1680, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930815

RESUMO

BACKGROUND: Tumor-based next-generation sequencing is used inconsistently as a tool to tailor treatment of ovarian cancer, yet beyond detection of somatic BRCA1 and BRCA2 mutations, the clinical benefit is not well established. This study aimed to assess the clinical relevance of tumor-based next-generation sequencing (tbNGS) in patients with ovarian cancer. METHODS: This retrospective study included patients with high-grade epithelial ovarian carcinoma. tbNGS results were identified in the electronic medical record using optical character recognition and natural language processing. Genetic, clinical, and demographic information was collected. Progression-free survival (PFS) and overall survival were calculated and compared using log-rank tests. Multivariate Cox regression and clustering analyses were used to identify patterns of genetic alterations associated with survival. RESULTS: Of 1092 patients in the described population, 409 (37.5%) had tbNGS results. Nearly all (96.1% [393/409]) had one or more genetic alterations. In 25.9% (106/409) of patients, an alteration that aligned with a targeted treatment was identified, and in an additional 48.7% (199/409), tbNGS results suggested eligibility for an investigational agent or clinical trial. The most frequent alterations were TP53, PIK3CA, and NF1 mutations, and CCNE1 amplification. Together, BRCA1 and BRCA2 mutations were associated with longer PFS (hazard ratio [HR], 0.62; 95% confidence interval [CI], 0.42-0.92; p = .02), whereas AKT2 amplification was associated with shorter PFS (HR, 3.86; 95% CI, 1.002-14.88; p < .05). Multivariate Cox regression and clustering analyses identified several combinations of genetic alterations that corresponded to outcomes in patients with high-grade serous carcinoma. CONCLUSIONS: tbNGS often yields clinically relevant information. Detailed analysis of population-level tumor genomics may help to identify therapeutic targets and guide development of clinical decision support tools. PLAIN LANGUAGE SUMMARY: Although more and more patients with ovarian cancer are undergoing tumor-based next-generation sequencing to identify genetic mutations in their tumors, the benefits of such testing are not well established. In a group of over 400 patients with ovarian cancer who underwent tumor-based next-generation sequencing in the course of their treatment, nearly all patients had one or more genetic alterations detected, and one out of four patients had a mutation that qualified them for a personalized treatment option.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/genética , Estudos Retrospectivos , Neoplasias Ovarianas/patologia , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
2.
Mod Pathol ; 33(12): 2422-2436, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32620919

RESUMO

Recently, comprehensive genomic analyses have allowed a better molecular characterization of diffuse large B-cell lymphoma (DLBCL), offering novel opportunities in patient risk stratification and management. In the era of precision medicine, this has allowed us to move closer toward a more promising therapeutic outcome in the setting of DLBCL. In this review, we highlight the newly reported heterogeneous mutational landscapes of DLBCL (from two whole-exome sequencing studies, and from a more recent work targeting a 293-gene of a hematologic malignancy-designed panel. Altogether, these studies provide further evidence of the clinical applicability of genomic tests. We also briefly review established biomarkers in DLBCL (e.g., MYC and TP53), and our understanding of the germinal center cell reaction, including its epigenetic regulation, emphasizing some of the key epigenetic modifiers that play a role in lymphomagenesis, with available therapeutic targets. In addition, we present current data regarding the role of immune landscapes in DLBCL (inflamed versus non-inflamed), how the recently defined molecular DLBCL subtypes may affect the cellular composition of the tumor microenvironment and the function of the immune cells, and how this new knowledge may result in promising therapeutic approaches in the near future.


Assuntos
Biomarcadores Tumorais/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Mutação , Microambiente Tumoral/imunologia , Animais , Tomada de Decisão Clínica , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Genômica , Humanos , Imunoterapia , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/terapia , Terapia de Alvo Molecular , Medicina de Precisão , Prognóstico
3.
JCO Precis Oncol ; 3: 1-13, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35100667

RESUMO

PURPOSE: HER2 amplification has been implicated in resistance to therapy with anti-epidermal growth factor receptor antibodies (anti-EGFRabs) in metastatic colorectal cancer (mCRC). The purpose of the study was to validate the predictive impact of HER2 amplification in mCRC. PATIENTS AND METHODS: We analyzed patients with RAS/BRAF wild-type mCRC across two distinct cohorts. In cohort 1 (n = 98), HER2 amplification was tested in tumor tissue using dual in situ hybridization (HER2 amplification: HER2/CEP17 ratio, 2.0 or greater). Cohort 2 (n = 70) included 16 patients with HER2 amplification and 54 HER2 nonamplified controls identified by next-generation sequencing (HER2 amplification: four or more copies) who had received prior anti-EGFRabs. The primary end point was progression-free survival (PFS) on treatment with anti-EGFRab therapy, which was estimated and compared using the Kaplan-Meier method and log-rank test. RESULTS: Median PFS in cohort 1 on anti-EGFRab-based therapy was significantly shorter in patients with HER2 amplification compared with HER2 nonamplified patients (2.8 v 8.1 months, respectively; hazard ratio [HR], 7.05; 95% CI, 3.4 to 14.9; P < .001). These findings were validated in cohort 2 (median PFS for HER2 amplified v nonamplified: 2.8 v 9.3 months, respectively; HR, 10.66; 95% CI, 4.5 to 25.1; P < .001). The median PFS on therapy without anti-EGFRabs was similar among HER2-amplified and nonamplified patients in both cohort 1 (9.7 v 11.1 months, respectively; HR, 1.01; 95% CI, 0.4 to 2.4; P = .97) and cohort 2 (9.6 v 11.3 months, respectively; HR, 1.21; 95% CI, 0.5 to 3.1; P = .66). In multivariable analyses, HER2 amplification emerged as a single independent predictor of poor PFS on anti-EGFRab therapy in both cohort 1 (HR, 6.48; 95% CI, 3.1 to 13.6; P < .001) and cohort 2 (HR, 10.1; 95% CI, 4.3 to 23.9; P < .001). CONCLUSION: HER2 amplification in RAS/RAF wild-type mCRC seems to be a predictive biomarker for lack of efficacy of anti-EGFRab therapy. Screening patients with RAS/BRAF wild-type mCRC for HER2 amplification should be considered before anti-EGFRab treatment to guide therapy and to identify patients for early referral to clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...