Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
2.
Nat Commun ; 15(1): 5842, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992037

RESUMO

Activating interferon responses with STING agonists (STINGa) is a current cancer immunotherapy strategy, and therapeutic modalities that enable tumor-targeted delivery via systemic administration could be beneficial. Here we demonstrate that tumor cell-directed STING agonist antibody-drug-conjugates (STINGa ADCs) activate STING in tumor cells and myeloid cells and induce anti-tumor innate immune responses in in vitro, in vivo (in female mice), and ex vivo tumor models. We show that the tumor cell-directed STINGa ADCs are internalized into myeloid cells by Fcγ-receptor-I in a tumor antigen-dependent manner. Systemic administration of STINGa ADCs in mice leads to STING activation in tumors, with increased anti-tumor activity and reduced serum cytokine elevations compared to a free STING agonist. Furthermore, STINGa ADCs induce type III interferons, which contribute to the anti-tumor activity by upregulating type I interferon and other key chemokines/cytokines. These findings reveal an important role for type III interferons in the anti-tumor activity elicited by STING agonism and provide rationale for the clinical development of tumor cell-directed STINGa ADCs.


Assuntos
Imunidade Inata , Imunoconjugados , Interferons , Proteínas de Membrana , Animais , Proteínas de Membrana/agonistas , Proteínas de Membrana/imunologia , Imunidade Inata/efeitos dos fármacos , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Imunoconjugados/administração & dosagem , Interferons/metabolismo , Interferon lambda , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Interferon Tipo I/imunologia , Citocinas/metabolismo , Células Mieloides/imunologia , Células Mieloides/efeitos dos fármacos , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Receptores de IgG/agonistas , Receptores de IgG/metabolismo , Receptores de IgG/imunologia
4.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906677

RESUMO

Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Modelos Animais de Doenças , Demência Frontotemporal , Proteína 1 Associada a ECH Semelhante a Kelch , Mitocôndrias , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Fenótipo , Transdução de Sinais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Mitocôndrias/metabolismo , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Espécies Reativas de Oxigênio/metabolismo , Mitofagia/genética , Fumarato de Dimetilo/farmacologia , Masculino
6.
Clin Epidemiol ; 16: 329-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798915

RESUMO

Objective: Partially observed confounder data pose challenges to the statistical analysis of electronic health records (EHR) and systematic assessments of potentially underlying missingness mechanisms are lacking. We aimed to provide a principled approach to empirically characterize missing data processes and investigate performance of analytic methods. Methods: Three empirical sub-cohorts of diabetic SGLT2 or DPP4-inhibitor initiators with complete information on HbA1c, BMI and smoking as confounders of interest (COI) formed the basis of data simulation under a plasmode framework. A true null treatment effect, including the COI in the outcome generation model, and four missingness mechanisms for the COI were simulated: completely at random (MCAR), at random (MAR), and two not at random (MNAR) mechanisms, where missingness was dependent on an unmeasured confounder and on the value of the COI itself. We evaluated the ability of three groups of diagnostics to differentiate between mechanisms: 1)-differences in characteristics between patients with or without the observed COI (using averaged standardized mean differences [ASMD]), 2)-predictive ability of the missingness indicator based on observed covariates, and 3)-association of the missingness indicator with the outcome. We then compared analytic methods including "complete case", inverse probability weighting, single and multiple imputation in their ability to recover true treatment effects. Results: The diagnostics successfully identified characteristic patterns of simulated missingness mechanisms. For MAR, but not MCAR, the patient characteristics showed substantial differences (median ASMD 0.20 vs 0.05) and consequently, discrimination of the prediction models for missingness was also higher (0.59 vs 0.50). For MNAR, but not MAR or MCAR, missingness was significantly associated with the outcome even in models adjusting for other observed covariates. Comparing analytic methods, multiple imputation using a random forest algorithm resulted in the lowest root-mean-squared-error. Conclusion: Principled diagnostics provided reliable insights into missingness mechanisms. When assumptions allow, multiple imputation with nonparametric models could help reduce bias.

7.
Int Rev Neurobiol ; 176: 327-384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38802178

RESUMO

Four medications with neuroprotective disease-modifying effects are now in use for motor neuron disease (MND). With FDA approvals for tofersen, relyvrio and edaravone in just the past year, 2022 ended a quarter of a century when riluzole was the sole such drug to offer to patients. The acceleration of approvals may mean we are witnessing the beginning of a step-change in how MND can be treated. Improvements in understanding underlying disease biology has led to more therapies being developed to target specific and multiple disease mechanisms. Consideration for how the pipeline of new therapeutic agents coming through in clinical and preclinical development can be more effectively evaluated with biomarkers, advances in patient stratification and clinical trial design pave the way for more successful translation for this archetypal complex neurodegenerative disease. While it must be cautioned that only slowed rates of progression have so far been demonstrated, pre-empting rapid neurodegeneration by using neurofilament biomarkers to signal when to treat, as is currently being trialled with tofersen, may be more effective for patients with known genetic predisposition to MND. Early intervention with personalized medicines could mean that for some patients at least, in future we may be able to substantially treat what is considered by many to be one of the most distressing diseases in medicine.


Assuntos
Doença dos Neurônios Motores , Fármacos Neuroprotetores , Humanos , Doença dos Neurônios Motores/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Animais
8.
Artigo em Inglês | MEDLINE | ID: mdl-38697235

RESUMO

BACKGROUND & AIMS: Mailed outreach for colorectal cancer (CRC) screening increases uptake but it is unclear how to offer the choice of testing. We evaluated if the active choice between colonoscopy and fecal immunochemical test (FIT), or FIT alone, increased response compared with colonoscopy alone. METHODS: This pragmatic, randomized, controlled trial at a community health center included patients between ages 50 and 74 who were not up to date with CRC screening. Patients were randomized 1:1:1 to the following: (1) colonoscopy only, (2) active choice of colonoscopy or FIT, or (3) FIT only. Patients received an outreach letter with instructions for testing (colonoscopy referral and/or an enclosed FIT kit), a reminder letter at 2 months, and another reminder at 3 to 5 months via text message or automated voice recording. The primary outcome was CRC screening completion within 6 months. RESULTS: Among 738 patients in the final analysis, the mean age was 58.7 years (SD, 6.2 y); 48.6% were insured by Medicaid and 24.3% were insured by Medicare; and 71.7% were White, 16.9% were Black, and 7.3% were Hispanic/Latino. At 6 months, 5.6% (95% CI, 2.8-8.5) completed screening in the colonoscopy-only arm, 12.8% (95% CI, 8.6-17.0) in the active-choice arm, and 11.3% (95% CI, 7.4-15.3) in the FIT-only arm. Compared with colonoscopy only, there was a significant increase in screening in active choice (absolute difference, 7.1%; 95% CI, 2.0-12.2; P = .006) and FIT only (absolute difference, 5.7%; 95% CI, 0.8-10.6; P = .02). CONCLUSIONS: Both choice of testing and FIT alone increased response and may align with patient preferences. TRIAL REGISTRATION: clinicaltrials.gov NCT04711473.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38747395

RESUMO

BACKGROUND: We examined whether trajectories of cognitive function over 10 years predict later-life physical activity (PA), sedentary time (ST), and sleep. METHODS: Participants were from the Adult Changes in Thought (ACT) cohort study. We included 611 ACT participants who wore accelerometers and had 3+ measures of cognition in the 10 years prior to accelerometer wear. The Cognitive Assessment Screening Instrument (CASI) measured cognition and was scored using item-response theory (IRT). activPAL and ActiGraph accelerometers worn over 7 days measured ST and PA outcomes. Self-reported time in bed and sleep quality measured sleep outcomes. Analyses used growth mixture modeling to classify CASI-IRT scores into latent groups and examine associations with PA, ST, and sleep including demographic and health covariates. RESULTS: Participants (Mean age = 80.3 (6.5) years, 90.3% White, 57.1% female, 29.3% had less than 16 years of education) fell into 3 latent trajectory groups: average stable CASI (56.1%), high stable CASI (34.0%), and declining CASI (9.8%). The declining group had 16 minutes less stepping time (95% confidence interval [95% CI]: 0.6, 31.4), 1 517 fewer steps per day (95% CI: 138, 2 896), and 16.3 minutes per day less moderate-to-vigorous PA (95% CI: 1.3, 31.3) compared to the average stable group. There were no associations between CASI trajectory and sedentary or sleep outcomes. CONCLUSIONS: Declining cognition predicted lower PA providing some evidence of a reverse relationship between PA and cognition in older adults. However, this conclusion is limited by having outcomes at only one time point, a nonrepresentative sample, self-reported sleep outcomes, and using a global cognition measure.


Assuntos
Acelerometria , Cognição , Exercício Físico , Comportamento Sedentário , Humanos , Feminino , Masculino , Cognição/fisiologia , Idoso , Idoso de 80 Anos ou mais , Sono/fisiologia
10.
Lancet ; 403(10442): 2381-2394, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735299

RESUMO

BACKGROUND: Motor neuron disease is a progressive, fatal neurodegenerative disease for which there is no cure. Acceptance and Commitment Therapy (ACT) is a psychological therapy incorporating acceptance, mindfulness, and behaviour change techniques. We aimed to evaluate the effectiveness of ACT plus usual care, compared with usual care alone, for improving quality of life in people with motor neuron disease. METHODS: We conducted a parallel, multicentre, two-arm randomised controlled trial in 16 UK motor neuron disease care centres or clinics. Eligible participants were aged 18 years or older with a diagnosis of definite or laboratory-supported probable, clinically probable, or possible familial or sporadic amyotrophic lateral sclerosis; progressive muscular atrophy; or primary lateral sclerosis; which met the World Federation of Neurology's El Escorial diagnostic criteria. Participants were randomly assigned (1:1) to receive up to eight sessions of ACT adapted for people with motor neuron disease plus usual care or usual care alone by a web-based system, stratified by site. Participants were followed up at 6 months and 9 months post-randomisation. Outcome assessors and trial statisticians were masked to treatment allocation. The primary outcome was quality of life using the McGill Quality of Life Questionnaire-Revised (MQOL-R) at 6 months post-randomisation. Primary analyses were multi-level modelling and modified intention to treat among participants with available data. This trial was pre-registered with the ISRCTN Registry (ISRCTN12655391). FINDINGS: Between Sept 18, 2019, and Aug 31, 2022, 435 people with motor neuron disease were approached for the study, of whom 206 (47%) were assessed for eligibility, and 191 were recruited. 97 (51%) participants were randomly assigned to ACT plus usual care and 94 (49%) were assigned to usual care alone. 80 (42%) of 191 participants were female and 111 (58%) were male, and the mean age was 63·1 years (SD 11·0). 155 (81%) participants had primary outcome data at 6 months post-randomisation. After controlling for baseline scores, age, sex, and therapist clustering, ACT plus usual care was superior to usual care alone for quality of life at 6 months (adjusted mean difference on the MQOL-R of 0·66 [95% CI 0·22-1·10]; d=0·46 [0·16-0·77]; p=0·0031). Moderate effect sizes were clinically meaningful. 75 adverse events were reported, 38 of which were serious, but no adverse events were deemed to be associated with the intervention. INTERPRETATION: ACT plus usual care is clinically effective for maintaining or improving quality of life in people with motor neuron disease. As further evidence emerges confirming these findings, health-care providers should consider how access to ACT, adapted for the specific needs of people with motor neuron disease, could be provided within motor neuron disease clinical services. FUNDING: National Institute for Health and Care Research Health Technology Assessment and Motor Neurone Disease Association.


Assuntos
Terapia de Aceitação e Compromisso , Doença dos Neurônios Motores , Qualidade de Vida , Humanos , Terapia de Aceitação e Compromisso/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/terapia , Doença dos Neurônios Motores/psicologia , Reino Unido , Idoso , Resultado do Tratamento
11.
Ann N Y Acad Sci ; 1536(1): 82-91, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38771698

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. The immunosuppressive functions of regulatory T lymphocytes (Tregs) are impaired in ALS, and correlate to disease progression. The phase 2a IMODALS trial reported an increase in Treg number in ALS patients following the administration of low-dose (ld) interleukin-2 (IL-2). We propose a pharmacometabolomics approach to decipher metabolic modifications occurring in patients treated with ld-IL-2 and its relationship with Treg response. Blood metabolomic profiles were determined on days D1, D64, and D85 from patients receiving 2 MIU of IL-2 (n = 12) and patients receiving a placebo (n = 12). We discriminated the three time points for the treatment group (average error rate of 42%). Among the important metabolites, kynurenine increased between D1 and D64, followed by a reduction at D85. The percentage increase of Treg number from D1 to D64, as predicted by the metabolome at D1, was highly correlated with the observed value. This study provided a proof of concept for metabolic characterization of the effect of ld-IL-2 in ALS. These data could present advances toward a personalized medicine approach and present pharmacometabolomics as a key tool to complement genomic and transcriptional data for drug characterization, leading to systems pharmacology.


Assuntos
Esclerose Lateral Amiotrófica , Interleucina-2 , Metabolômica , Linfócitos T Reguladores , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Interleucina-2/administração & dosagem , Interleucina-2/metabolismo , Metabolômica/métodos , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Masculino , Pessoa de Meia-Idade , Feminino , Cinurenina/metabolismo , Idoso , Metaboloma/efeitos dos fármacos
12.
Ann Clin Transl Neurol ; 11(7): 1775-1786, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38775181

RESUMO

OBJECTIVE: Neurofilament heavy-chain gene (NEFH) variants are associated with multiple neurodegenerative diseases, however, their relationship with ALS has not been robustly explored. Still, NEFH is commonly included in genetic screening panels worldwide. We therefore aimed to determine if NEFH variants modify ALS risk. METHODS: Genetic data of 11,130 people with ALS and 7,416 controls from the literature and Project MinE were analysed. We performed meta-analyses of published case-control studies reporting NEFH variants, and variant analysis of NEFH in Project MinE whole-genome sequencing data. RESULTS: Fixed-effects meta-analysis found that rare (MAF <1%) missense variants in the tail domain of NEFH increase ALS risk (OR 4.55, 95% CI 2.13-9.71, p < 0.0001). In Project MinE, ultrarare NEFH variants increased ALS risk (OR 1.37 95% CI 1.14-1.63, p = 0.0007), with rod domain variants (mostly intronic) appearing to drive the association (OR 1.45 95% CI 1.18-1.77, pMadsen-Browning = 0.0007, pSKAT-O = 0.003). While in the tail domain, ultrarare (MAF <0.1%) pathogenic missense variants were also associated with higher risk of ALS (OR 1.94, 95% CI 0.86-4.37, pMadsen-Browning = 0.039), supporting the meta-analysis results. Finally, several tail in-frame deletions were also found to affect disease risk, however, both protective and pathogenic deletions were found in this domain, highlighting an intricate architecture that requires further investigation. INTERPRETATION: We showed that NEFH tail missense and in-frame deletion variants, and intronic rod variants are risk factors for ALS. However, they are not variants of large effect, and their functional impact needs to be clarified in further studies. Therefore, their inclusion in routine genetic screening panels should be reconsidered.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Neurofilamentos , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/epidemiologia , Proteínas de Neurofilamentos/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Domínios Proteicos/genética , Mutação
13.
Fluids Barriers CNS ; 21(1): 34, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605366

RESUMO

The blood-brain barrier (BBB) serves as a highly intricate and dynamic interface connecting the brain and the bloodstream, playing a vital role in maintaining brain homeostasis. BBB dysfunction has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS); however, the role of the BBB in neurodegeneration is understudied. We developed an ALS patient-derived model of the BBB by using cells derived from 5 patient donors carrying C9ORF72 mutations. Brain microvascular endothelial-like cells (BMEC-like cells) derived from C9ORF72-ALS patients showed altered gene expression, compromised barrier integrity, and increased P-glycoprotein transporter activity. In addition, mitochondrial metabolic tests demonstrated that C9ORF72-ALS BMECs display a significant decrease in basal glycolysis accompanied by increased basal and ATP-linked respiration. Moreover, our study reveals that C9-ALS derived astrocytes can further affect BMECs function and affect the expression of the glucose transporter Glut-1. Finally, C9ORF72 patient-derived BMECs form leaky barriers through a cell-autonomous mechanism and have neurotoxic properties towards motor neurons.


Assuntos
Esclerose Lateral Amiotrófica , Barreira Hematoencefálica , Células Endoteliais , Humanos , Esclerose Lateral Amiotrófica/genética , Barreira Hematoencefálica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células Endoteliais/metabolismo
14.
medRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633814

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.

15.
Analyst ; 149(9): 2738-2746, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38533726

RESUMO

Neuromuscular disorders are a group of conditions that can result in weakness of skeletal muscles. Examples include fatal diseases such as amyotrophic lateral sclerosis and conditions associated with high morbidity such as myopathies (muscle diseases). Many of these disorders are known to have abnormal protein folding and protein aggregates. Thus, easy to apply methods for the detection of such changes may prove useful diagnostic biomarkers. Raman spectroscopy has shown early promise in the detection of muscle pathology in neuromuscular disorders and is well suited to characterising the conformational profiles relating to protein secondary structure. In this work, we assess if Raman spectroscopy can detect differences in protein structure in muscle in the setting of neuromuscular disease. We utilise in vivo Raman spectroscopy measurements from preclinical models of amyotrophic lateral sclerosis and the myopathy Duchenne muscular dystrophy, together with ex vivo measurements of human muscle samples from individuals with and without myopathy. Using quantitative conformation profiling and matrix factorisation we demonstrate that quantitative 'conformational fingerprinting' can be used to identify changes in protein folding in muscle. Notably, myopathic conditions in both preclinical models and human samples manifested a significant reduction in α-helix structures, with concomitant increases in ß-sheet and, to a lesser extent, nonregular configurations. Spectral patterns derived through non-negative matrix factorisation were able to identify myopathy with a high accuracy (79% in mouse, 78% in human tissue). This work demonstrates the potential of conformational fingerprinting as an interpretable biomarker for neuromuscular disorders.


Assuntos
Biomarcadores , Distrofia Muscular de Duchenne , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Animais , Biomarcadores/análise , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/diagnóstico , Músculo Esquelético/química , Músculo Esquelético/patologia , Camundongos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/patologia , Masculino
17.
Scand Stat Theory Appl ; 51(1): 334-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38370508

RESUMO

Practical problems with missing data are common, and many methods have been developed concerning the validity and/or efficiency of statistical procedures. On a central focus, there have been longstanding interests on the mechanism governing data missingness, and correctly deciding the appropriate mechanism is crucially relevant for conducting proper practical investigations. In this paper, we present a new hypothesis testing approach for deciding between the conventional notions of missing at random and missing not at random in generalized linear models in the presence of instrumental variables. The foundational idea is to develop appropriate discrepancy measures between estimators whose properties significantly differ only when missing at random does not hold. We show that our testing approach achieves an objective data-oriented choice between missing at random or not. We demonstrate the feasibility, validity, and efficacy of the new test by theoretical analysis, simulation studies, and a real data analysis.

18.
JAMIA Open ; 7(1): ooae008, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38304248

RESUMO

Objectives: Partially observed confounder data pose a major challenge in statistical analyses aimed to inform causal inference using electronic health records (EHRs). While analytic approaches such as imputation are available, assumptions on underlying missingness patterns and mechanisms must be verified. We aimed to develop a toolkit to streamline missing data diagnostics to guide choice of analytic approaches based on meeting necessary assumptions. Materials and methods: We developed the smdi (structural missing data investigations) R package based on results of a previous simulation study which considered structural assumptions of common missing data mechanisms in EHR. Results: smdi enables users to run principled missing data investigations on partially observed confounders and implement functions to visualize, describe, and infer potential missingness patterns and mechanisms based on observed data. Conclusions: The smdi R package is freely available on CRAN and can provide valuable insights into underlying missingness patterns and mechanisms and thereby help improve the robustness of real-world evidence studies.

19.
Heliyon ; 10(3): e24975, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317984

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∼50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS.

20.
Brain Commun ; 6(1): fcad331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38162899

RESUMO

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease, associated with the degeneration of both upper and lower motor neurons of the motor cortex, brainstem and spinal cord. Death in most patients results from respiratory failure within 3-4 years from symptom onset. However, due to disease heterogeneity some individuals survive only months from symptom onset while others live for several years. Identifying specific biomarkers that aid in establishing disease prognosis, particularly in terms of predicting disease progression, will help our understanding of amyotrophic lateral sclerosis pathophysiology and could be used to monitor a patient's response to drugs and therapeutic agents. Transcriptomic profiling technologies are continually evolving, enabling us to identify key gene changes in biological processes associated with disease. MicroRNAs are small non-coding RNAs typically associated with regulating gene expression, by degrading mRNA or reducing levels of gene expression. Being able to associate gene expression changes with corresponding microRNA changes would help to distinguish a more complex biomarker signature enabling us to address key challenges associated with complex diseases such as amyotrophic lateral sclerosis. The present study aimed to investigate the transcriptomic profile (mRNA and microRNA) of lymphoblastoid cell lines from amyotrophic lateral sclerosis patients to identify key signatures that are distinguishable in those patients who suffered a short disease duration (<12 months) (n = 22) compared with those that had a longer disease duration (>6 years) (n = 20). Transcriptional profiling of microRNA-mRNA interactions from lymphoblastoid cell lines in amyotrophic lateral sclerosis patients revealed differential expression of genes involved in cell cycle, DNA damage and RNA processing in patients with longer survival from disease onset compared with those with short survival. Understanding these particular microRNA-mRNA interactions and the pathways in which they are involved may help to distinguish potential therapeutic targets that could exert neuroprotective effects to prolong the life expectancy of amyotrophic lateral sclerosis patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...