Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 76(6): 1314-22, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19741006

RESUMO

The 90-kDa heat shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Consequently, there is considerable interest in developing chemotherapeutic drugs that specifically disrupt the function of Hsp90. Here, we investigated the extent to which a novel novobiocin-derived C-terminal Hsp90 inhibitor, designated KU135, induced antiproliferative effects in Jurkat T-lymphocytes. The results indicated that KU135 bound directly to Hsp90, caused the degradation of known Hsp90 client proteins, and induced more potent antiproliferative effects than the established N-terminal Hsp90 inhibitor 17-allylamino-demethoxygeldanamycin (17-AAG). Closer examination of the cellular response to KU135 and 17-AAG revealed that only 17-AAG induced a strong up-regulation of Hsp70 and Hsp90. In addition, KU135 caused wild-type cells to undergo G(2)/M arrest, whereas cells treated with 17-AAG accumulated in G(1). Furthermore, KU135 but not 17-AAG was found to be a potent inducer of mitochondria-mediated apoptosis as evidenced, in part, by the fact that cell death was inhibited to a similar extent by Bcl-2/Bcl-x(L) overexpression or the depletion of apoptotic protease-activating factor-1 (Apaf-1). Together, these data suggest that KU135 inhibits cell proliferation by regulating signaling pathways that are mechanistically different from those targeted by 17-AAG and as such represents a novel opportunity for Hsp90 inhibition.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Novobiocina/análogos & derivados , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Cromatografia de Afinidade , Citometria de Fluxo , Humanos , Células Jurkat , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Novobiocina/metabolismo , Novobiocina/farmacologia , Ressonância de Plasmônio de Superfície
2.
J Biol Chem ; 284(48): 33447-55, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19758996

RESUMO

Activation of executioner caspases during receptor-mediated apoptosis in type II cells requires the engagement of the mitochondrial apoptotic pathway. Although it is well established that recruitment of mitochondria in this context involves the cleavage of Bid to truncated Bid (tBid), the precise post-mitochondrial signaling responsible for executioner caspase activation is controversial. Here, we used distinct clones of type II Jurkat T-lymphocytes in which the mitochondrial apoptotic pathway had been inhibited to investigate the molecular requirements necessary for Fas-induced apoptosis. Cells overexpressing either Bcl-2 or Bcl-x(L) were protected from apoptosis induced by agonistic anti-Fas antibody. By comparison, Apaf-1-deficient Jurkat cells were sensitive to anti-Fas, exhibiting Bid cleavage, Bak activation, the release of cytochrome c and Smac, and activation of executioner caspase-3. Inhibiting downstream caspase activation with the pharmacological inhibitor Z-DEVD-fmk or by expressing the BIR1/BIR2 domains of X-linked inhibitor of apoptosis protein (XIAP) decreased all anti-Fas-induced apoptotic changes. Additionally, pretreatment of Bcl-x(L)-overexpressing cells with a Smac mimetic sensitized these cells to Fas-induced apoptosis. Combined, our findings strongly suggest that Fas-mediated activation of executioner caspases and induction of apoptosis do not depend on apoptosome-mediated caspase-9 activation in prototypical type II cells.


Assuntos
Apoptose , Apoptossomas/metabolismo , Caspase 9/metabolismo , Receptor fas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Citocromos c'/metabolismo , Ativação Enzimática , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Células Jurkat , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína bcl-X/metabolismo
3.
J Biol Chem ; 284(17): 11247-55, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19233849

RESUMO

The extent to which the BH3-only protein Bid is important for intrinsic (mitochondria-mediated) apoptotic cell death induced by genotoxic stress remains controversial. In the present study, we examine this issue using a panel of gene-manipulated Bax-deficient Jurkat T-lymphocytes. Cells stably depleted of Bid were far less sensitive than control-transfected cells to etoposide-induced apoptosis. In particular, drug-induced Bak activation, cytochrome c release, loss of mitochondrial membrane potential, and caspase activation were all decreased in cells lacking Bid. Reconstitution experiments using recombinant proteins and permeabilized Bid-deficient cells demonstrated that truncated Bid (tBid), but not full-length Bid, potently induced Bak activation and the release of cytochrome c. Further, caspase-8-deficient Jurkat cells efficiently cleaved Bid and were sensitive to drug-induced apoptosis. By comparison, Apaf-1-deficient cells, as well as cells overexpressing full-length X-linked inhibitor of apoptosis protein (XIAP) or the BIR1/BIR2 domains of XIAP, failed to cleave Bid in response to genotoxic stress. These data suggest that tBid plays an important regulatory role in the execution of DNA damage-induced cytochrome c release and apoptosis. However, the fact that cleavage of Bid to tBid is mediated by executioner caspases suggests that a self-amplifying feed forward loop involving caspases, Bid, and mitochondria may help determine irreversible commitment to apoptosis.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspases/metabolismo , Regulação da Expressão Gênica , Membranas Mitocondriais/metabolismo , Antineoplásicos/farmacologia , Apoptose , Caspase 8/metabolismo , Separação Celular , Citocromos c/metabolismo , Dano ao DNA , Etoposídeo/farmacologia , Humanos , Células Jurkat , Modelos Biológicos , Linfócitos T/metabolismo
4.
J Biol Chem ; 283(51): 35532-8, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18927073

RESUMO

Mitochondrial outer membrane permeabilization and the release of intermembrane space proteins, such as cytochrome c, are early events during intrinsic (mitochondria-mediated) apoptotic signaling. Although this process is generally accepted to require the activation of Bak or Bax, the underlying mechanism responsible for their activation during true intrinsic apoptosis is not well understood. In the current study, we investigated the molecular requirements necessary for Bak activation using distinct clones of Bax-deficient Jurkat T-lymphocytes in which the intrinsic pathway had been inhibited. Cells stably overexpressing Bcl-2/Bcl-x(L) or stably depleted of Apaf-1 were equally resistant to apoptosis induced by the DNA-damaging anticancer drug etoposide as determined by phosphatidylserine externalization and caspase activation. Strikingly, characterization of mitochondrial apoptotic events in all three drug-resistant cell lines revealed that, without exception, resistance to apoptosis was associated with an absence of Bak activation, cytochrome c release, and mitochondrial membrane depolarization. Furthermore, we found that etoposide-induced apoptosis and mitochondrial events were inhibited in cells stably overexpressing either full-length X-linked inhibitor of apoptosis protein (XIAP) or the BIR1/BIR2 domains of XIAP. Combined, our findings suggest that caspase-mediated positive amplification of initial mitochondrial changes can determine the threshold for irreversible activation of the intrinsic apoptotic pathway.


Assuntos
Apoptose , Caspases/metabolismo , Permeabilidade da Membrana Celular , Citocromos c/metabolismo , Membranas Mitocondriais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspases/genética , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/genética , Citocromos c/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Humanos , Células Jurkat , Estrutura Terciária de Proteína/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...