Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(19): 2629-2632, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38345342

RESUMO

Three-dimensional covalent connectors are valuable synthons for accessing crystalline or amorphous networks. Currently, fused polycyclic alkanes are employed as connectors in this context. We debut phosphorus-nitrogen (PN) cages as new 3-dimensional (3-D) inorganic connectors that yield crystalline and amorphous networks, including examples with gas porosity. We show that the high tunability of PN cages accelerates network diversification and the presence of a responsive 31P NMR spectroscopic handle provides structural insight. Collectively, this work unlocks a new and convenient 3-D synthon for reticular chemistry.

2.
Chem Asian J ; 18(18): e202300561, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497841

RESUMO

Phosphorus-nitrogen (PN) adamantanoid cages are valuable precursors for materials chemistry, but their syntheses are based on harsh methods that sometimes require access to restricted reagents. We report a new and scalable synthesis of PN adamantanoid compounds by chlorosilane elimination between bis-silylated amines and phosphorus trichloride. We further study the mechanism of the recently-reported four-fold oxidation of such cages with Me3 SiN3 to yield tetravalent tetrahedral connectors for materials chemistry. Reaction monitoring and kinetic modelling revealed the key rate-limiting step, but attempts to accelerate this using Lewis acid additives were unsuccessful. Nevertheless, a new four-fold oxidized PN-adamantanoid cage has been prepared and structurally characterized.

3.
Anal Chem ; 94(22): 8005-8013, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35616262

RESUMO

Visual one-step simultaneous detection of low-abundance methylation is a crucial challenge in early cancer diagnosis in a simple manner. Through the design of a closed split bipolar electrochemistry system (BE), detection of promoter methylation of tumor suppressor genes in papillary thyroid cancer, RASSF1A and SLC5A8, was achieved using electrochemiluminescence. For this purpose, electrochemiluminescence of luminol loaded into the Fe3O4@UiO-66 and gold nanorod-functionalized graphite-like carbon nitride nanosheet (AuNRs@C3N4 NS), separately, on the anodic and cathodic pole bipolar electrodes (BPEs) in two different chambers of a bipolar cell were recorded on a smartphone camera. To provide the same electric potential (ΔEelec) through the BPEs to conduct simultaneous light emission, as well as to achieve higher sensitivity, anodic and cathodic poles BPEs were separately connected to ruthenium nanoparticles electrodeposited on nitrogen-doped graphene-coated Cu foam (fCu/N-GN/RuNPs) to provide a hydrogen evolution reaction (HER) and polycatechol-modified reduced graphene oxide/pencil graphite electrode (PC-rGO/PGE) to provide electrooxidation of hydrazine. Moreover, taking advantages of the strong cathodic ECL activity due to the roles of AuNRs, as well as the high density of capture probes on the UiO-66 and Fe3O4 roles in improving the signal-to-background ratio (S/B) in complicated plasma media, a sensitive visual ECL immunosensor was developed to detect two different genes as model target analytes in patient plasma samples. The ability of discrimination of methylation levels as low as 0.01% and above 90% clinical sensitivity in thyroid cancer patient plasma implies that the present strategy is able to diagnose cancer early, as well as monitor responses of patients to therapeutic agents.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Neoplasias da Glândula Tireoide , Técnicas Eletroquímicas , Eletrodos , Genes Supressores de Tumor , Ouro , Humanos , Imunoensaio , Limite de Detecção , Medições Luminescentes , Estruturas Metalorgânicas , Metilação , Transportadores de Ácidos Monocarboxílicos , Ácidos Ftálicos , Smartphone
4.
Angew Chem Int Ed Engl ; 61(25): e202204851, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384216

RESUMO

Tetraarylmethanes and adamantanes are important rigid covalent connectors that play a four-way scaffolding role in molecular and materials chemistry. We report the synthesis of a new tetravalent phosphaza-adamantane cage, (PNSiMe3 )4 (NMe)6 (2), that shows high thermal, air, and redox stability due to its geometry. It nevertheless participates in covalent four-fold functionalization reactions along its periphery. The combination of a robust core and reactive corona makes 2 a convenient inorganic scaffold upon which tetrahedral molecular and macromolecular chemistry can be constructed. This potential is demonstrated by the synthesis of a tetrakis(bis(phosphine)iminium) ion (in compound 3) and the first all P/N poly(phosphazene) network (5).

5.
Coord Chem Rev ; 4292021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33678810

RESUMO

Porphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks. This review will provide a historical overview of the development and applications of porphyrin-based MOFs from early studies focused on design and structures, to recent efforts on their utilization in biomimetic catalysis, photocatalysis, electrocatalysis, sensing, and biomedical applications.

6.
Langmuir ; 31(48): 13238-46, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26595192

RESUMO

Bipolar electrochemistry (BE) is employed for both creating electrocatalysts composition gradient and visual screening of the prepared composition on a single substrate in just two experiment runs. In a series of proof-of-principle experiments, we demonstrate gradient electrodeposition of Ni-Cu using BE; then the electrocatalytic activity of the prepared composition gradient toward the hydrogen evolution reaction (HER) is visually screened in the BE system using array of BPEs. Moreover, the morphology and the chemical composition of the Ni-Cu gradient are screened along the length of the bipolar electrode (BPE). By measuring the potential gradient over the BPE, it is also demonstrated that by controlling the concentration of the metals precursor and the supporting electrolyte, the length of the bipolar electrodeposited gradient can be controlled.

7.
Anal Chim Acta ; 888: 52-8, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26320958

RESUMO

This work represents a new, extremely low cost and easy method for fabrication of bipolar electrode (BPE) for rapid and simultaneous screening of potential candidates for electrocatalytic reactions and sensing applications. Our method takes advantage of the silver reflective layer deposited on already available recordable digital versatile disc (DVD-R) polycarbonate substrate which acts as BPE. Oxidation of the reflective layer of the DVD-R in anodic pole of the BPE results in a permanent and visually measurable dissolute length. Therefore, one could correlate the electrocatalytic activity of the catalyst at the cathodic pole of the BPE, as well as the concentration of analyte in the solution, to the dissolution length of the BPE. To illustrate the promising applications of this new substrate as BPE, p-benzoquinone (BQ) and hydrogen peroxide were tested as model targets for the sensing application. Moreover, in order to show the feasibility of using DVD BPEs for screening applications, the electrocatalytic activity of Pt, Pd, Au, and pristine DVD substrate toward hydrogen evolution reaction (HER) were compared using an array of BPEs prepared on DVD substrate.

8.
Anal Chem ; 87(16): 8123-31, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26176414

RESUMO

The development of simple, inexpensive, hand-held, user-friendly biosensor for high throughput and multiplexed genotyping of various single nucleotide polymorphisms (SNPs) in a single run experiment by a nonspecialist user is the main challenge in the analysis of DNA. Visualizing the signal and possibility to monitor SNPs by a digital camera opens a new horizon for the routine applications. In the present manuscript, a novel wireless electrochemiluminescence (ECL) DNA array is introduced for the visualized genotyping of different SNPs on the basis of ECL of luminol/hydrogen peroxide system on a bipolar electrode (BPE) array platform. After modification of anodic poles of the array with the DNA probe and its hybridization with the targets, genotyping of various SNPs is carried out by exposing the array to different monobase modified luminol-platinum nanoparticles (M-L-PtNPs). Upon the hybridization of M-L-PtNPs to mismatch sites, the ECL of luminol is followed using a photomultiplier tube (PMT) or digital camera and the images are analyzed by ImageJ software. This biosensor can detect even thermodynamically stable SNP (G-T mismatches) in the range of 2-600 pM. Also, by combining the advantages of BPE and the high visual sensitivity of ECL, it could be easily expected to achieve sensitive screening of different SNPs. The present biosensor demonstrates the capability for the discrimination between PCR products of normal, heterozygous, and homozygous beta thalassemia genetic disorders.


Assuntos
Técnicas Eletroquímicas , Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Eletrodos , Genótipo , Medições Luminescentes , Luminol/química , Nanopartículas Metálicas/química , Platina/química , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...