Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 51(4): 755-764, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35512790

RESUMO

Urban gardeners contribute to sustainable cities and often take great care to limit exposure to soil contaminants like lead (Pb). Although best management practices (BMPs) like mulching to reduce soil splash can limit crop contamination, they may not eliminate all contamination for leafy greens, which trap soil particles. How effective is washing at removing Pb contamination from leafy greens when using BMPs? Are certain washing techniques more effective than others? We present results from two experiments addressing these questions. We grew lettuce (Lactuca sativa L.) in homogenized high-Pb (∼1,150 mg kg-1 ) and low-Pb (∼90 mg kg-1 ) soils in Brooklyn, NY, and Ithaca, NY. Our results show that washing can remove 75-94% of Pb from lettuce, including that remaining after the use of contamination-reducing BMPs. It was estimated that washing removed 97% of Pb deposited by splash, which is the dominant source of Pb, and removed 91% deposited by downward deposition. All washing techniques were effective at reducing Pb levels, with differences in effectiveness ranked as: commercial soak > vinegar soak > water soak (and water rinse not significantly different from vinegar or water soak). Washing crops grown in low-Pb soils is also important. Without washing, lettuce grown in low-Pb soil may still have Pb levels above the European Commission comparison value. We offer these empirical findings and recommendations in support of urban growers.


Assuntos
Chumbo , Poluentes do Solo , Ácido Acético , Jardins , Chumbo/análise , Lactuca , Solo , Poluentes do Solo/análise , Água
2.
J Environ Manage ; 286: 112211, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667819

RESUMO

Urban community gardeners employ a range of best practices that limit crop contamination by toxicants like lead (Pb). While Pb root uptake is generally low, the relative significance of various Pb deposition processes and the effectiveness of best practices in reducing these processes have not been sufficiently characterized. This study compared leafy lettuce (Lactuca sativa) grown in high Pb (1150 mg/kg) and low Pb (90 mg/kg) soils, under three different soil cover conditions: 1) bare soil, 2) mulch cover to limit splash, and 3) mulch cover under hoophouses to limit splash and air deposition, in a New York City (NYC) community garden and a rural site in Ithaca, New York (NY). The lettuces were further compared to greenhouse (Ithaca) and supermarket (NYC) samples. Atmospheric deposition was monitored by passive trap collection through funnel samplers. Results show that in low Pb soils, splash and atmospheric deposition accounted for 84 and 78% of lettuce Pb in NYC and Ithaca, respectively. In high Pb soils, splash and atmospheric deposition accounted for 88 and 93% of Pb on lettuces, with splash being the dominant mechanism. Soil covers were shown to be effective at significantly (p < 0.05) reducing lettuce Pb contamination, and mulching is strongly recommended as a best practice.


Assuntos
Poluentes do Solo , Solo , Chumbo , Lactuca , Cidade de Nova Iorque , Poluentes do Solo/análise
3.
Water Air Soil Pollut ; 226(8): 265, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26900187

RESUMO

The potential for lead (Pb) and arsenic (As) transfer into vegetables was studied on old orchard land contaminated by lead arsenate pesticides. Root (carrot), leafy (lettuce), and vegetable fruits (green bean, tomato) were grown on seven "miniplots" with soil concentrations ranging from near background to ≈ 800 and ≈ 200 mg kg-1 of total Pb and As, respectively. Each miniplot was divided into sub-plots and amended with 0% (control), 5% and 10% (by weight) compost and cropped for 3 years. Edible portions of each vegetable were analyzed for total Pb and As to test the effect of organic matter on transfer of these toxic elements into the crop. Vegetable Pb and As concentrations were strongly correlated to soil total Pb and As, respectively, but not to soil organic matter content or compost addition level. For Pb vegetable concentrations, carrot ≥ lettuce > bean > tomato. For As, lettuce > carrot > bean > tomato. A complementary single-year study of lettuce, arugula, spinach, and collards revealed a beneficial effect of compost in reducing both Pb and As concentrations in leafy vegetables. Comparisons of all measured vegetable concentrations to international health-based standards indicate that tomatoes can be grown without exceeding standards even in substantially Pb- and As-contaminated soils, but carrots and leafy greens may exceed standards when grown in soils with more than 100-200 mg kg-1 Pb. Leafy greens may also exceed health-based standards in gardens where soil As is elevated, with arugula having a particularly strong tendency to accumulate As.

4.
Environ Pollut ; 194: 254-261, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25163429

RESUMO

Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability.


Assuntos
Bário/análise , Cádmio/análise , Chumbo/análise , Poluentes do Solo/análise , Verduras/química , Contaminação de Alimentos/análise , Jardinagem , Cidade de Nova Iorque , Raízes de Plantas/química , Solo/química
5.
Environ Pollut ; 187: 162-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24502997

RESUMO

Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures.


Assuntos
Monitoramento Ambiental , Jardinagem , Metais/análise , Poluentes do Solo/análise , Cádmio/análise , Poluição Ambiental/estatística & dados numéricos , Humanos , Chumbo/análise , Cidade de Nova Iorque , Solo/química , Zinco/análise
6.
Environ Geochem Health ; 36(4): 633-49, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24287691

RESUMO

Raising chickens for eggs in urban areas is becoming increasingly common. Urban chickens may be exposed to lead, a common urban soil contaminant. We measured lead concentrations in chicken eggs from New York City (NYC) community gardens and collected information on factors that might affect those concentrations. Lead was detected between 10 and 167 µg/kg in 48 % of NYC eggs. Measures of lead in eggs from a henhouse were significantly associated (p < 0.005) with lead concentrations in soil. The association between soil and egg lead has been evaluated only once before, by a study of a rural region in Belgium. In our study, the apparent lead soil-to-egg transfer efficiency was considerably lower than that found in Belgium, suggesting that there may be important geographic differences in this transfer. We developed models that suggested that, for sites like ours, lead concentrations in >50 % of eggs from a henhouse would exceed store-bought egg concentrations (<7-13 µg/kg; 3 % above detection limit) at soil lead concentrations >120 mg/kg and that the concentration in one of six eggs from a henhouse would exceed a 100 µg/kg guidance value at soil lead concentrations >410 mg/kg. Our models also suggested that the availability of dietary calcium supplements was another influential factor that reduced egg lead concentrations. Estimates of health risk from consuming eggs with the lead concentrations we measured generally were not significant. However, soil lead concentrations in this study were <600 mg/kg, and considerably higher concentrations are not uncommon. Efforts to reduce lead transfer to chicken eggs and associated exposure are recommended for urban chicken keepers.


Assuntos
Galinhas , Ovos/análise , Contaminação de Alimentos/análise , Chumbo/análise , Poluentes do Solo/análise , Criação de Animais Domésticos , Animais , Feminino , Humanos , Modelos Teóricos , Cidade de Nova Iorque , Saúde Pública
7.
Soil Sci ; 177(11): 650-654, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23439963

RESUMO

Soil has been identified as a significant source of lead (Pb) exposure for both children and adults. Therefore, identifying possibly contaminated soils by soil testing is important to protect public health. Soil Pb test results are usually reported as total Pb (mg kg(-1)), carried out using a concentrated nitric acid digestion procedure by hot plate (EPA method 3050) or microwave (EPA method 3051) followed by inductively coupled plasma atomic emission spectrometry to determine total Pb in the digest. However, this procedure is both time-consuming and expensive, sometimes costing homeowners and gardeners over $50 per sample. To make soil Pb testing more economically accessible to homeowners and gardeners, several university soil-testing laboratories offer less expensive screening tests designed to estimate total soil Pb. The first objective of this study was to compare three commonly used screening tests, modified Morgan (MM), Mehlich 3 (M3), and 1 M nitric acid (HNO(3)), to the standard total Pb testing method (EPA method 3051) to find which extractant is the most reliable predictor of total Pb. The second objective was to investigate the effect that different degrees of soil grinding have on the total Pb test and the extracted Pb concentration measured from the 1 M HNO(3) test. Results indicate that the strongest predictor of total Pb is 1 M HNO(3), followed by M3, and MM, and that thorough grinding is necessary if using less than five grams of soil in a Pb test, in order to adequately homogenize Pb-contaminated samples and achieve acceptable testing reproducibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...