Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 96(4-1): 043307, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347602

RESUMO

The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy of estimating the density of states. Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising models and also the two-dimensional Potts model.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(4 Pt 1): 042104, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19905370

RESUMO

The Binder cumulant at the phase transition of Ising models on square lattices with ferromagnetic couplings between nearest neighbors and with competing antiferromagnetic couplings between next-nearest neighbors, along only one diagonal, is determined using Monte Carlo techniques. In the phase diagram a disorder line occurs separating regions with monotonically decaying and with oscillatory spin-spin correlations. Findings on the variation of the critical cumulant with the ratio of the two interaction strengths are compared to related recent results based on renormalization-group calculations.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 2): 046301, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19518327

RESUMO

Theoretical description and numerical simulation of an evaporating sessile drop are developed. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop, and the diffusion of vapor in air. A shape of the rotationally symmetric drop is determined within the quasistationary approximation. Nonstationary effects in the diffusion of the vapor are also taken into account. Simulation results agree well with the data of evaporation rate measurements for the toluene drop. Marangoni forces associated with the temperature dependence of the surface tension generate fluid convection in the sessile drop. Our results demonstrate several dynamical stages of the convection characterized by different number of vortices in the drop. During the early stage the array of vortices arises near a surface of the drop and induces a nonmonotonic spatial distribution of the temperature over the drop surface. The initial number of near-surface vortices in the drop is controlled by the Marangoni cell size which is similar to that given by Pearson for flat fluid layers. This number quickly decreases with time resulting in three bulk vortices in the intermediate stage. The vortices finally transform into the single convection vortex in the drop existing during about 1/2 of the evaporation time.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(1 Pt 1): 010401, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17358103

RESUMO

We develop a technique for probing the harmonic measure of a diffusion-limited-aggregation (DLA) cluster surface with variable-size particles and generate 1000 clusters with 50 x 10(6) particles using an original off-lattice killing-free algorithm. Taking, in sequence, the limit of the vanishing size of the probing particles and then sending the growing cluster size to infinity, we achieve unprecedented accuracy in determining the fractal dimension D=1.7100(2) crucial to the characterization of the geometric properties of DLA clusters.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 2): 036701, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16605692

RESUMO

We propose methods for constructing high-quality pseudorandom number generators (RNGs) based on an ensemble of hyperbolic automorphisms of the unit two-dimensional torus (Sinai-Arnold map or cat map) while keeping a part of the information hidden. The single cat map provides the random properties expected from a good RNG and is hence an appropriate building block for an RNG, although unnecessary correlations are always present in practice. We show that introducing hidden variables and introducing rotation in the RNG output, accompanied with the proper initialization, dramatically suppress these correlations. We analyze the mechanisms of the single-cat-map correlations analytically and show how to diminish them. We generalize the Percival-Vivaldi theory in the case of the ensemble of maps, find the period of the proposed RNG analytically, and also analyze its properties. We present efficient practical realizations for the RNGs and check our predictions numerically. We also test our RNGs using the known stringent batteries of statistical tests and find that the statistical properties of our best generators are not worse than those of other best modern generators.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(2 Pt 2): 026703, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15447616

RESUMO

We analyze the evolution of the local simulation times (LST) in parallel discrete event simulations. The new ingredients introduced are (i) we associate the LST with the nodes and not with the processing elements, and (ii) we propose to minimize the exchange of information between different processing elements by freezing the LST on the boundaries between processing elements for some time of processing and then releasing them by a wide-stream memory exchange between processing elements. The highlights of our approach are (i) it keeps the highest level of processor time utilization during the algorithm evolution, (ii) it takes a reasonable time for the memory exchange, excluding the time consuming and complicated process of message exchange between processors, and (iii) the communication between processors is decoupled from the calculations performed on a processor. The effectiveness of our algorithm grows with the number of nodes (or threads). This algorithm should be applicable for any parallel simulation with short-range interactions, including parallel or grid simulations of partial differential equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...