Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 213: 114403, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696870

RESUMO

Visualizing the plasma membrane of living mammalian cells both in vitro and in vivo is crucial for tracking their cellular activities. However, due to the complex and dynamic nature of the plasma membrane, most commercial dyes for membrane staining can only realize very limited imaging performance. Thus, precise and stable plasma membrane imaging remains technically challenging. Here, by taking advantage of the small, well-defined, and amine-rich dendrimers, we prepared poly(ethylene glycol)-cholesterol (PEG-Chol)-conjugated and cyanine dye (e.g., cyanine2, cyanine3, and cyanine5)-labeled dendrimer nanoprobes (termed DPC-Cy2, DPC-Cy3, and DPC-Cy5 NPs). It was revealed that these probes enabled universal, wash-free, long-term (at least 8 h), and multicolor (green, yellow, and red) plasma membrane labeling of a variety of live mammalian cells. Further, we confirmed that the nanoprobes (using DPC-Cy5 as a representative) could achieve high-quality, wash-free, and stable cell surface labeling of live zebrafish embryos. More importantly, we demonstrated that our probes could act as biosensors to visualize the toxicity of metal-organic frameworks (MOFs) toward the epidermal cells of zebrafish embryos, and thus they hold great potential for identifying the toxic effect of drugs/materials at the single-cell scale or in live animals. The present work highlights the advantages of utilizing dendrimers for constructing functional imaging materials, and it is also believed that the fluorescent dendrimer nanoprobes developed in this work may find wide applications like cell imaging, drug toxicity evaluation, and cellular state monitoring.


Assuntos
Técnicas Biossensoriais , Dendrímeros , Animais , Membrana Celular/metabolismo , Dendrímeros/toxicidade , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/toxicidade , Mamíferos/metabolismo , Peixe-Zebra/metabolismo
2.
Appl Opt ; 60(26): 8016-8021, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34613062

RESUMO

A novel, to the best of our knowledge, method is proposed in this study to permit the controllable resolution of a micro-angle measurement by using a Michelson interferometer. The resolution of the proposed system can be adjusted by changing the distances between a pair of parallel mirrors. Through experiments, it was observed that as the distance was changed from 0 to 6 mm, the corresponding resolution was significantly altered from 22.88 to 14.02 µrad. Compared with other small angle measurement methods, the proposed method can realize the conversion of multiple measurement resolutions more easily and conveniently.

3.
Biomaterials ; 232: 119668, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31927179

RESUMO

Mitophagy is a specific self-protective autophagic process that degrades damaged or dysfunctional mitochondria, and is generally considered to reduce the effectiveness of mitochondria-targeted therapies. Here, we report an energy depletion-based anticancer strategy by selectively activating excessive mitophagy in cancer cells. We fabricate a type of mitochondria-targeting nanomicelles via the self-assembly of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and dc-IR825 (a near-infrared cyanine dye and a photothermal agent). The TPGS/dc-IR825 nanomicelles enable mitochondrial damage in cancer cells, which, for self-protection, activate two autophagic pathways, (1) mitophagy and (2) adenosine triphosphate (ATP) shortage-triggered autophagy. However, the excessive mitophagy/autophagy activities far surpass the degradative capacity of autolysosomes, leading to the formation of micrometer-sized vacuoles and degradation blockage. Immunofluorescence staining and Western blot analysis reveal that the nanomicelle-treated cancer cells are under severe ATP shortage, which eventually causes substantial cell death. Moreover, the nanomicelles intravenously injected into tumor-bearing mice show high tumor accumulation, long tumor retention, and inhibit the tumor growth by inducing excessive mitophagy/autophagy and energy depletion in tumor cells. Additional near-infrared laser irradiation treatment further enhances the in vitro and in vivo anticancer efficiencies of the nanomicelles, due to the excellent photothermal and photodynamic effects of dc-IR825. We believe that this work highlights the important role of mitophagy/autophagy in treating cancers.


Assuntos
Mitofagia , Nanoestruturas , Neoplasias , Fototerapia , Animais , Autofagia , Lisossomos/metabolismo , Camundongos , Micelas , Mitocôndrias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...