Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mitochondrial DNA B Resour ; 8(8): 867-871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600503

RESUMO

Carallia brachiata (Lour.) Merr. (1919) is an important medical resource distributed across subtropical Asia. In this study, the complete chloroplast genome of C. brachiata was sequenced, revealing a total length of 162,460 bp, including four regions - a large single copy (89,814 bp), a small single copy (18,804 bp), and a pair of inverted repeats (26,921 bp each). The overall guanine + cytosine content was 35.76%. In total, 130 genes were annotated within the chloroplast genome, comprising 85 protein-coding, 37 tRNA, and 8 rRNA genes. Subsequent phylogenetic analyses revealed that C. brachiata is closely related to Carallia diplopetala.

2.
Nanomaterials (Basel) ; 12(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35407165

RESUMO

It is of great significance to popularize and apply nanotechnology in forest plantations for the high-quality development of such areas. Camphor trees have good ecological and environmental benefits and are economic, which makes them worthy of widespread popularization and promotion. In this paper, we successfully synthesized bulk and rod-like TiO2 powder and used it to study the influence of camphor seed germination and seedling growth. The germination rate, germination potential, germination index activity index of camphorwood seed during germination were measured by TiO2 solution with different morphology. Meanwhile, the fresh weight, root length and seedling height of seedlings, as well as the activities of CAT, SOD and POD and MDA content in the seedlings were measured in detail. The difference in the promoting effect between bulk and rod TiO2 powder was compared. The possible reasons are also explained. The results showed that bulk and rod-like TiO2 solution improved the activities of SOD, POD and CAT, and increased the resilience of camphor seedlings. Moreover, the rod-like TiO2 solution has a stronger osmotic effect on seed, and has a better effect on promoting seed germination and seedling growth. The study on the influence of nano-TiO2 concentration also further showed that the treatment of nano-TiO2 solution with appropriate concentration could effectively promote seed germination and seedling growth, and enhance its adoptability to adversity; but excessive concentration will bring some side effects, which was not conducive to seed germination and seedling growth. In general, the results of this study provide a theoretical basis and technical guidance for the practical application of nanotechnology in camphor seedling and afforestation production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...