Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38717876

RESUMO

Neurovascular coupling (NVC) provides important insights into the intricate activity of brain functioning and may aid in the early diagnosis of brain diseases. Emerging evidences have shown that NVC could be assessed by the coupling between electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, this endeavor presents significant challenges due to the absence of standardized methodologies and reliable techniques for coupling analysis of these two modalities. In this study, we introduced a novel method, i.e., the collaborative multi-output variational Gaussian process convergent cross-mapping (CMVGP-CCM) approach to advance coupling analysis of EEG and fNIRS. To validate the robustness and reliability of the CMVGP-CCM method, we conducted extensive experiments using chaotic time series models with varying noise levels, sequence lengths, and causal driving strengths. In addition, we employed the CMVGP-CCM method to explore the NVC between EEG and fNIRS signals collected from 26 healthy participants using a working memory (WM) task. Results revealed a significant causal effect of EEG signals, particularly the delta, theta, and alpha frequency bands, on the fNIRS signals during WM. This influence was notably observed in the frontal lobe, and its strength exhibited a decline as cognitive demands increased. This study illuminates the complex connections between brain electrical activity and cerebral blood flow, offering new insights into the underlying NVC mechanisms of WM.


Assuntos
Algoritmos , Eletroencefalografia , Memória de Curto Prazo , Acoplamento Neurovascular , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Distribuição Normal , Acoplamento Neurovascular/fisiologia , Adulto Jovem , Memória de Curto Prazo/fisiologia , Voluntários Saudáveis , Reprodutibilidade dos Testes , Análise Multivariada , Lobo Frontal/fisiologia , Lobo Frontal/diagnóstico por imagem , Mapeamento Encefálico/métodos , Ritmo Teta/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Dinâmica não Linear , Ritmo Delta/fisiologia , Ritmo alfa/fisiologia
2.
Comput Biol Med ; 174: 108445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603901

RESUMO

Transfer learning (TL) has demonstrated its efficacy in addressing the cross-subject domain adaptation challenges in affective brain-computer interfaces (aBCI). However, previous TL methods usually use a stationary distance, such as Euclidean distance, to quantify the distribution dissimilarity between two domains, overlooking the inherent links among similar samples, potentially leading to suboptimal feature mapping. In this study, we introduced a novel algorithm called multi-source manifold metric transfer learning (MSMMTL) to enhance the efficacy of conventional TL. Specifically, we first selected the source domain based on Mahalanobis distance to enhance the quality of the source domains and then used manifold feature mapping approach to map the source and target domains on the Grassmann manifold to mitigate data drift between domains. In this newly established shared space, we optimized the Mahalanobis metric by maximizing the inter-class distances while minimizing the intra-class distances in the target domain. Recognizing that significant distribution discrepancies might persist across different domains even on the manifold, to ensure similar distributions between the source and target domains, we further imposed constraints on both domains under the Mahalanobis metric. This approach aims to reduce distributional disparities and enhance the electroencephalogram (EEG) emotion recognition performance. In cross-subject experiments, the MSMMTL model exhibits average classification accuracies of 88.83 % and 65.04 % for SEED and DEAP, respectively, underscoring the superiority of our proposed MSMMTL over other state-of-the-art methods. MSMMTL can effectively solve the problem of individual differences in EEG-based affective computing.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Emoções , Aprendizado de Máquina , Humanos , Eletroencefalografia/métodos , Emoções/fisiologia , Processamento de Sinais Assistido por Computador , Masculino , Encéfalo/fisiologia , Feminino
3.
Med Biol Eng Comput ; 62(6): 1689-1701, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342784

RESUMO

Motor imagery (MI) paradigms have been widely used in neural rehabilitation and drowsiness state assessment. The progress in brain-computer interface (BCI) technology has emphasized the importance of accurately and efficiently detecting motor imagery intentions from electroencephalogram (EEG). Despite the recent breakthroughs made in developing EEG-based algorithms for decoding MI, the accuracy and efficiency of these models remain limited by technical challenges posed by cross-subject heterogeneity in EEG data processing and the scarcity of EEG data for training. Inspired by the optimal transport theory, this study aims to develop a novel three-stage transfer learning (TSTL) method, which uses the existing labeled data from a source domain to improve classification performance on an unlabeled target domain. Notably, the proposed method comprises three components, namely, the Riemannian tangent space mapping (RTSM), source domain transformer (SDT), and optimal subspace mapping (OSM). The RTSM maps a symmetric positive definite matrix from the Riemannian space to the tangent space to minimize the marginal probability distribution drift. The SDT transforms the source domain to a target domain by finding the optimal transport mapping matrix to reduce the joint probability distribution differences. The OSM finally maps the transformed source domain and original target domain to the same subspace to further mitigate the distribution discrepancy. The performance of the proposed method was validated on two public BCI datasets, and the average accuracy of the algorithm on two datasets was 72.24% and 69.29%. Our results demonstrated the improved performance of EEG-based MI detection in comparison with state-of-the-art algorithms.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Imaginação/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-37983151

RESUMO

In musculoskeletal systems, describing accurately the coupling direction and intensity between physiological electrical signals is crucial. The maximum information coefficient (MIC) can effectively quantify the coupling strength, especially for short time series. However, it cannot identify the direction of information transmission. This paper proposes an effective time-delayed back maximum information coefficient (TDBackMIC) analysis method by introducing a time delay parameter to measure the causal coupling. Firstly, the effectiveness of TDBackMIC is verified on simulations, and then it is applied to the analysis of functional cortical-muscular coupling and intermuscular coupling networks to explore the difference of coupling characteristics under different grip force intensities. Experimental results show that functional cortical-muscular coupling and intermuscular coupling are bidirectional. The average coupling strength of EEG → EMG and EMG → EEG in beta band is 0.86 ± 0.04 and 0.81 ± 0.05 at 10% maximum voluntary contraction (MVC) condition, 0.83 ± 0.05 and 0.76 ± 0.04 at 20% MVC, and 0.76 ± 0.03 and 0.73 ± 0.04 at 30% MVC. With the increase of grip strength, the strength of functional cortical-muscular coupling in beta frequency band decreases, the intermuscular coupling network exhibits enhanced connectivity, and the information exchange is closer. The results demonstrate that TDBackMIC can accurately judge the causal coupling relationship, and functional cortical-muscular coupling and intermuscular coupling network under different grip forces are different, which provides a certain theoretical basis for sports rehabilitation.


Assuntos
Músculo Esquelético , Extremidade Superior , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Força da Mão/fisiologia , Causalidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-37021906

RESUMO

For solving the problem of the inevitable decline in the accuracy of cross-subject emotion recognition via Electroencephalograph (EEG) signal transfer learning due to the negative transfer of data in the source domain, this paper offers a new method to dynamically select the data suitable for transfer learning and eliminate the data that may lead to negative transfer. The method which is called cross-subject source domain selection (CSDS) consists of the next three parts. 1) First, a Frank-copula model is established according to Copula function theory to study the correlation between the source domain and the target domain, which is described by the Kendall correlation coefficient. 2) The calculation method for the Maximum Mean Discrepancy is improved to determine the distance between classes in a single source. After normalization, the Kendall correlation coefficient is superimposed, and the threshold is set to identify the source-domain data most suitable for transfer learning. 3) In the process of transfer learning, on the basis of Manifold Embedded Distribution Alignment, the Local Tangent Space Alignment method is used to provide a low-dimensional linear estimation of the local geometry of nonlinear manifolds, which maintains the local characteristics of the sample data after dimensionality reduction. Experimental results show that compared with the traditional methods, the CSDS increases the accuracy of emotion classification by approximately 2.8% and reduces the runtime by approximately 65%.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37022366

RESUMO

Motor Imagery (MI) paradigm is critical in neural rehabilitation and gaming. Advances in brain-computer interface (BCI) technology have facilitated the detection of MI from electroencephalogram (EEG). Previous studies have proposed various EEG-based classification algorithms to identify the MI, however, the performance of prior models was limited due to the cross-subject heterogeneity in EEG data and the shortage of EEG data for training. Therefore, inspired by generative adversarial network (GAN), this study aims to propose an improved domain adaption network based on Wasserstein distance, which utilizes existing labeled data from multiple subjects (source domain) to improve the performance of MI classification on a single subject (target domain). Specifically, our proposed framework consists of three components, including a feature extractor, a domain discriminator, and a classifier. The feature extractor employs an attention mechanism and a variance layer to improve the discrimination of features extracted from different MI classes. Next, the domain discriminator adopts the Wasserstein matrix to measure the distance between source domain and target domain, and aligns the data distributions of source and target domain via adversarial learning strategy. Finally, the classifier uses the knowledge acquired from the source domain to predict the labels in the target domain. The proposed EEG-based MI classification framework was evaluated by two open-source datasets, the BCI Competition IV Datasets 2a and 2b. Our results demonstrated that the proposed framework could enhance the performance of EEG-based MI detection, achieving better classification results compared with several state-of-the-art algorithms. In conclusion, this study is promising in helping the neural rehabilitation of different neuropsychiatric diseases.

7.
Comput Biol Med ; 159: 106860, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37080005

RESUMO

Recent researches on emotion recognition suggests that domain adaptation, a form of transfer learning, has the capability to solve the cross-subject problem in Affective brain-computer interface (aBCI) field. However, traditional domain adaptation methods perform single to single domain transfer or simply merge different source domains into a larger domain to realize the transfer of knowledge, resulting in negative transfer. In this study, a multi-source transfer learning framework was proposed to promote the performance of multi-source electroencephalogram (EEG) emotion recognition. The method first used the data distribution similarity ranking (DDSA) method to select the appropriate source domain for each target domain off-line, and reduced data drift between domains through manifold feature mapping on Grassmann manifold. Meanwhile, the minimum redundancy maximum correlation algorithm (mRMR) was employed to select more representative manifold features and minimized the conditional distribution and marginal distribution of the manifold features, and then learned the domain-invariant classifier by summarizing structural risk minimization (SRM). Finally, the weighted fusion criterion was applied to further improve recognition performance. We compared our method with several state-of-the-art domain adaptation techniques using the SEED and DEAP dataset. Results showed that, compared with the conventional MEDA algorithm, the recognition accuracy of our proposed algorithm on SEED and DEAP dataset were improved by 6.74% and 5.34%, respectively. Besides, compared with TCA, JDA, and other state-of-the-art algorithms, the performance of our proposed method was also improved with the best average accuracy of 86.59% on SEED and 64.40% on DEAP. Our results demonstrated that the proposed multi-source transfer learning framework is more effective and feasible than other state-of-the-art methods in recognizing different emotions by solving the cross-subject problem.


Assuntos
Interfaces Cérebro-Computador , Emoções , Algoritmos , Eletroencefalografia/métodos , Aprendizagem
8.
Math Biosci Eng ; 20(3): 4560-4573, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36896512

RESUMO

The non-stationary nature of electroencephalography (EEG) signals and individual variability makes it challenging to obtain EEG signals from users by utilizing brain-computer interface techniques. Most of the existing transfer learning methods are based on batch learning in offline mode, which cannot adapt well to the changes generated by EEG signals in the online situation. To address this problem, a multi-source online migrating EEG classification algorithm based on source domain selection is proposed in this paper. By utilizing a small number of labeled samples from the target domain, the source domain selection method selects the source domain data similar to the target data from multiple source domains. After training a classifier for each source domain, the proposed method adjusts the weight coefficients of each classifier according to the prediction results to avoid the negative transfer problem. This algorithm was applied to two publicly available motor imagery EEG datasets, namely, BCI Competition Ⅳ Dataset Ⅱa and BNCI Horizon 2020 Dataset 2, and it achieved average accuracies of 79.29 and 70.86%, respectively, which are superior to those of several multi-source online transfer algorithms, confirming the effectiveness of the proposed algorithm.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Aprendizagem
9.
Med Biol Eng Comput ; 61(2): 485-495, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36522521

RESUMO

Lung cancer is one of the cancers with the highest incidence rate and death rate worldwide. An initial lesion of the lung appears as nodules in the lungs on CT images, and early and timely diagnosis can greatly improve the survival rate. Automatic detection of lung nodules can greatly improve work efficiency and accuracy rate. However, owing to the three-dimensional complex structure of lung CT data and the variation in shapes and appearances of lung nodules, high-precision detection of pulmonary nodules remains challenging. To address the problem, a new 3D framework IR-UNet + + is proposed for automatic pulmonary nodule detection in this paper. First, the Inception Net and ResNet are combined as the building blocks. Second, the squeeze-and-excitation structure is introduced into building blocks for better feature extraction. Finally, two short skip pathways are redesigned based on the U-shaped network. To verify the effectiveness of our algorithm, systematic experiments are conducted on the LUNA16 dataset. Experimental results show that the proposed network performs better than several existing lung nodule detection methods with the sensitivity of 1 FP/scan, 4 FPs/scan, and 8 FPs/scan being 90.13%, 94.77%, and 95.78%, respectively. Therefore, it comes to the conclusion that our proposed model has achieved superior performance for lung nodule detection.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Imageamento Tridimensional/métodos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
10.
IEEE J Biomed Health Inform ; 27(1): 296-307, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36315544

RESUMO

The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden details owing to the low-dimensional structure of EEG. To effectively transfer data from a source to target domain, a multi-manifold embedding domain adaptive algorithm is proposed for BCI. First, we aligned the EEG covariance matrix in the Riemannian manifold and extracted the characteristics of each source domain in the tangent space to reflect the differences between different source domains. Subsequently, we mapped the extracted characteristics to the Grassmann manifold to obtain a common feature representation. In domain adaptation, the geometric and statistical attributes of EEG data were considered simultaneously, and the target domain divergence matrix was updated with pseudo-labels to maximize the inter-class distance and minimize the intra-class distance. Datasets generated via BCIs were used to verify the effectiveness of the algorithm. Under two experimental paradigms, namely single-source to single-target and multi-source to single-target, the average accuracy of the algorithm on three datasets was 73.31% and 81.02%, respectively, which is more than that of several state-of-the-art EEG cross-domain classification approaches. Our multi-manifold embedded domain adaptive method achieved satisfactory results on EEG transfer learning. The method can achieve effective EEG classification without a same subject's training set.


Assuntos
Interfaces Cérebro-Computador , Humanos , Processamento de Sinais Assistido por Computador , Algoritmos , Eletroencefalografia/métodos
11.
Math Biosci Eng ; 19(9): 9437-9456, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35942767

RESUMO

In the field of neuroscience, it is very important to evaluate the causal coupling characteristics between bioelectrical signals accurately and effectively. Transfer entropy is commonly used to analyze complex data, especially the causal relationship between data with non-linear, multidimensional characteristics. However, traditional transfer entropy needs to estimate the probability density function of the variable, which is computationally complex and unstable. In this paper, a new and effective method for entropy transfer is proposed, by means of applying R-vine copula function estimation. The effectiveness of R-vine copula transfer entropy is first verified on several simulations, and then applied to intermuscular coupling analysis to explore the characteristics of the intermuscular coupling network of muscles in non-fatigue and fatigue conditions. The experiment results show that as the muscle group enters the fatigue state, the community structure can be adjusted and the muscle nodes participating in the exercise are fully activated, enabling the two-way interaction between different communities. Finally, it comes to the conclusion that the proposed method can make accurate inferences about complex causal coupling. Moreover, the characteristics of the intermuscular coupling network in both non-fatigue and fatigue states can provide a new theoretical perspective for the diagnosis of neuromuscular fatigue and sports rehabilitation, which has good application value.


Assuntos
Músculos , Extremidade Superior , Entropia , Exercício Físico , Funções Verossimilhança
12.
J Neurosci Methods ; 370: 109489, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090904

RESUMO

BACKGROUND: Brain computer interface (BCI) utilizes brain signals to help users interact with external devices directly. EEG is one of the most commonly used techniques for brain signal acquisition in BCI. However, it is notoriously difficult to build a generic EEG recognition model due to significant non-stationarity and subject-to-subject variations, and the requirement for long time training. Transfer learning (TL) is particularly useful because it can alleviate the calibration requirement in EEG-based BCI applications by transferring the calibration information from existing subjects to new subject. To take advantage of geometric properties in Riemann manifold and joint distribution adaptation, a manifold embedded transfer learning (METL) framework was proposed for motor imagery (MI) EEG decoding. NEW METHOD: First, the covariance matrices of the EEG trials are first aligned on the SPD manifold. Then the features are extracted from both the symmetric positive definite (SPD) manifold and Grassmann manifold. Finally, the classification model is learned by combining the structural risk minimization (SRM) of source domain and joint distribution alignment of source and target domains. RESULT: Experimental results on two MI EEG datasets verify the effectiveness of the proposed METL. In particular, when there are a small amount of labeled samples in the target domain, METL demonstrated a more accurate and stable classification performance than conventional methods. COMPARISON WITH EXISTING METHODS: Compared with several state-of-the-art methods, METL has achieved better classification accuracy, 71.81% and 69.06% in single-to-single (STS), 83.14% and 76.00% in multi-to-single (MTS) transfer tasks, respectively. CONCLUSIONS: METL can cope with single source domain or multi-source domains and compared with single-source transfer learning, multi-source transfer learning can improve the performance effectively due to the data expansion. It is effective enough to achieve superior performance for classification of EEG signals.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia/métodos , Humanos , Imaginação , Aprendizagem , Aprendizado de Máquina
13.
Math Biosci Eng ; 18(6): 7919-7935, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34814281

RESUMO

Hybrid EEG-fNIRS brain-computer interface (HBCI) is widely employed to enhance BCI performance. EEG and fNIRS signals are combined to increase the dimensionality of the information. Time windows are used to select EEG and fNIRS singles synchronously. However, it ignores that specific modal signals have their own characteristics, when the task is stimulated, the information between the modalities will mismatch at the moment, which has a significant impact on the classification performance. Here we propose a novel crossing time windows optimization for mental arithmetic (MA) based BCI. The EEG and fNIRS signals were segmented separately by sliding time windows. Then crossing time windows (CTW) were combined with each one segment from EEG and fNIRS selected independently. Furthermore, EEG and fNIRS features were extracted using Filter Bank Common Spatial Pattern (FBCSP) and statistical methods from each sample. Mutual information was calculated for FBCSP and statistical features to characterize the discrimination of crossing time windows, and the optimal window would be selected based on the largest mutual information. Finally, a sparse structured framework of Fisher Lasso feature selection (FLFS) was designed to select the joint features, and conventional Linear Discriminant Analysis (LDA) was employed to perform classification. We used proposed method for a MA dataset. The classification accuracy of the proposed method is 92.52 ± 5.38% and higher than other methods, which shows the rationality and superiority of the proposed method.


Assuntos
Interfaces Cérebro-Computador , Coleta de Dados , Eletroencefalografia , Projetos de Pesquisa , Espectroscopia de Luz Próxima ao Infravermelho
14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(4): 742-752, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34459175

RESUMO

In order to more accurately and effectively understand the intermuscular coupling of different temporal and spatial levels from the perspective of complex networks, a new multi-scale intermuscular coupling network analysis method was proposed in this paper. The multivariate variational modal decomposition (MVMD) and Copula mutual information (Copula MI) were combined to construct an intermuscular coupling network model based on MVMD-Copula MI, and the characteristics of intermuscular coupling of multiple muscles of upper limbs in different time-frequency scales during reaching exercise in healthy subjects were analyzed by using the network parameters such as node strength and clustering coefficient. The experimental results showed that there are obvious differences in the characteristics of intermuscular coupling in the six time-frequency scales. Specifically, the triceps brachii (TB) had relatively high coupling strength with the middle deltoid (MD) and posterior deltoid (PD), and the intermuscular function was closely connected. However, the biceps brachii (BB) was independent of other muscles. The intermuscular coupling network had scale differences. MVMD-Copula MI can quantitatively describe the relationship of multi-scale intermuscular coupling strength, which has good application prospects.


Assuntos
Exercício Físico , Músculo Esquelético , Braço , Eletromiografia , Humanos , Extremidade Superior
15.
J Neurosci Methods ; 361: 109274, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229027

RESUMO

BACKGROUND: Sparse representation-based classification (SRC) has more advantages in motor imagery EEG pattern recognition, and the quality of dictionary construction directly determines the performance of SRC. In this paper, we proposed a two-dimensional dictionary optimization (TDDO) method to directly improve the performance of SRC. NEW METHOD: Firstly, an initial dictionary was constructed with multi-band features extracted by filter band common spatial pattern (FBCSP). Then Lasso regression is used to select significant features in each atom synchronously in the horizontal direction, and the KNN-based method is used to clean up noise atoms in the vertical direction. Finally, an SRC method by training samples linearly representing test samples was implemented in classification. RESULTS: The results show the necessity and rationality of TDDO-SRC method. The highest average classification accuracy of 86.5% and 92.4% is obtained on two public datasets. COMPARISON WITH EXISTING METHOD(S): The proposed method has more superior classification accuracy compared to traditional methods and existing winners' methods. CONCLUSIONS: The quality of dictionary construction has a great impact on the robustness of SRC. And compared with the original SRC, the classification accuracy of the optimized TDDO-SRC is greatly improved.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia , Humanos , Imaginação , Processamento de Sinais Assistido por Computador
16.
Math Biosci Eng ; 18(4): 4247-4263, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34198435

RESUMO

Common spatial pattern (CSP) as a spatial filtering method has been most widely applied to electroencephalogram (EEG) feature extraction to classify motor imagery (MI) in brain-computer interface (BCI) applications. The effectiveness of CSP is determined by the quality of interception in a specific time window and frequency band. Although numerous algorithms have been designed to optimize CSP by splitting the EEG data with a sliding time window and dividing the frequency bands with a set of band-pass filters, simultaneously. However, they did not consider the drawbacks of the rapid increase in data volume and feature dimensions brought about by this method, which would reduce the classification accuracy and calculation efficiency of the model. Therefore, we propose an optimal channel-based sparse time-frequency blocks common spatial pattern (OCSB-CSP) feature extraction method to improve the model classification accuracy and computational efficiency. Comparative experiments on two public EEG datasets show that the proposed method can quickly select significant time-frequency blocks and improve classification performance. The average classification accuracies are higher than those of other winners' methods, providing a new idea for the improvement of BCI applications.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia , Imaginação , Processamento de Sinais Assistido por Computador
17.
Comput Methods Programs Biomed ; 207: 106150, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34034032

RESUMO

BACKGROUND AND OBJECTIVE: In the brain computer interface (BCI) field, using sub-band common spatial pattern (SBCSP) and filter bank common spatial pattern (FBCSP) can improve the accuracy of classification by selection a specific frequency band. However, in the cross-subject classification, due to the individual differences between different subjects, the performance is limited. METHODS: This paper introduces the idea of transfer learning and presents the sub-band target alignment common spatial pattern (SBTACSP) method and applies it to the cross-subject classification of motor imagery (MI) EEG signals. First, the EEG signals are bandpass-filtered into multiple frequency bands (sub-band filtering). Subsequently, the source domain trails are aligned into the target domain space in each frequency band. The CSP algorithm is then employed to extract features among which more representative features are selected by the minimum redundancy maximum relevance (mRMR) approach from each sub-band. Then the features of all sub-bands are fused. Finally, conventional linear discriminant analysis (LDA) algorithm is used for MI classification. RESULTS: Our method is evaluated on Datasets Ⅱa and Ⅱb of the BCI Competition Ⅳ. Compared with six state-of-the-art algorithms, the proposed SBTACSP method performed relatively the best and achieved a mean classification accuracy of 75.15% and 66.85% in cross-subject classification of Datasets Ⅱa and Ⅱb respectively. CONCLUSION: Therefore, the combination of sub-band filtering and transfer learning achieves superior classification performance compared to either one. The proposed algorithms will greatly promote the practical application of MI based BCIs.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia , Humanos , Imaginação , Processamento de Sinais Assistido por Computador
18.
Med Biol Eng Comput ; 58(9): 2119-2130, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32676841

RESUMO

Both labeled and unlabeled data have been widely used in electroencephalographic (EEG)-based brain-computer interface (BCI). However, labeled EEG samples are generally scarce and expensive to collect, while unlabeled samples are considered to be abundant in real applications. Although the semi-supervised learning (SSL) allows us to utilize both labeled and unlabeled data to improve the classification performance as against supervised algorithms, it has been reported that unlabeled data occasionally undermine the performance of SSL in some cases. To overcome this challenge, we propose a collaborative representation-based semi-supervised extreme learning machine (CR-SSELM) algorithm to evaluate the risk of unlabeled samples by a new safety-control mechanism. Specifically, the ELM model is firstly used to predict unlabeled samples and then the collaborative representation (CR) approach is employed to reconstruct the unlabeled samples according to the obtained prediction results, from which the risk degree of unlabeled sample is defined. A risk-based regularization term is then constructed accordingly and embedded into the objective function of the SS-ELM. Experiments conducted on benchmark and EEG datasets demonstrate that the proposed method outperforms the ELM and SS-ELM algorithm. Moreover, the proposed CR-SSELM even offers the best performance while SS-ELM yields worse performance compared with its supervised counterpart (ELM). Graphical abstract This paper proposes a collaborative representation-based semi-supervised extreme learning machine (CR-SSELM) algorithm to evaluate the risk of unlabeled samples by a new safety-control mechanism. It is aim to solve the safety problem of SS-ELM method that SS-ELM yields worse performance than ELM. With the help of safety mechanism, the performance of our method is still better than supervised ELM method.


Assuntos
Interfaces Cérebro-Computador/estatística & dados numéricos , Eletroencefalografia/classificação , Eletroencefalografia/estatística & dados numéricos , Aprendizado de Máquina Supervisionado , Algoritmos , Benchmarking , Engenharia Biomédica , Interfaces Cérebro-Computador/psicologia , Bases de Dados Factuais , Humanos , Imaginação/fisiologia , Análise dos Mínimos Quadrados , Redes Neurais de Computação , Máquina de Vetores de Suporte
19.
Comput Intell Neurosci ; 2020: 3287589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256550

RESUMO

Recent technological advances have enabled researchers to collect large amounts of electroencephalography (EEG) signals in labeled and unlabeled datasets. It is expensive and time consuming to collect labeled EEG data for use in brain-computer interface (BCI) systems, however. In this paper, a novel active learning method is proposed to minimize the amount of labeled, subject-specific EEG data required for effective classifier training, by combining measures of uncertainty and representativeness within an extreme learning machine (ELM). Following this approach, an ELM classifier was first used to select a relatively large batch of unlabeled examples, whose uncertainty was measured through the best-versus-second-best (BvSB) strategy. The diversity of each sample was then measured between the limited labeled training data and previously selected unlabeled samples, and similarity is measured among the previously selected samples. Finally, a tradeoff parameter is introduced to control the balance between informative and representative samples, and these samples are then used to construct a powerful ELM classifier. Extensive experiments were conducted using benchmark and multiclass motor imagery EEG datasets to evaluate the efficacy of the proposed method. Experimental results show that the performance of the new algorithm exceeds or matches those of several state-of-the-art active learning algorithms. It is thereby shown that the proposed method improves classifier performance and reduces the need for training samples in BCI applications.


Assuntos
Interfaces Cérebro-Computador , Aprendizado de Máquina , Eletroencefalografia , Humanos
20.
Comput Intell Neurosci ; 2019: 4721863, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396270

RESUMO

The rapid development of the automotive industry has brought great convenience to our life, which also leads to a dramatic increase in the amount of traffic accidents. A large proportion of traffic accidents were caused by driving fatigue. EEG is considered as a direct, effective, and promising modality to detect driving fatigue. In this study, we presented a novel feature extraction strategy based on a deep learning model to achieve high classification accuracy and efficiency in using EEG for driving fatigue detection. EEG signals were recorded from six healthy volunteers in a simulated driving experiment. The feature extraction strategy was developed by integrating the principal component analysis (PCA) and a deep learning model called PCA network (PCANet). In particular, the principal component analysis (PCA) was used to preprocess EEG data to reduce its dimension in order to overcome the limitation of dimension explosion caused by PCANet, making this approach feasible for EEG-based driving fatigue detection. Results demonstrated high and robust performance of the proposed modified PCANet method with classification accuracy up to 95%, which outperformed the conventional feature extraction strategies in the field. We also identified that the parietal and occipital lobes of the brain were strongly associated with driving fatigue. This is the first study, to the best of our knowledge, to practically apply the modified PCANet technique for EEG-based driving fatigue detection.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Fadiga/fisiopatologia , Análise de Componente Principal , Processamento de Sinais Assistido por Computador , Acidentes de Trânsito/estatística & dados numéricos , Adulto , Algoritmos , Condução de Veículo , Humanos , Masculino , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...