Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(43): 10581-10588, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34694808

RESUMO

Pb-free double perovskites, such as Cs2AgBiBr6, are alternatives to lead halide perovskites for photovoltaic applications due to superior stability, low toxicity, and promising optoelectronic properties. However, their performance is subpar. We combine nonadiabatic molecular dynamics and real-time time-dependent density-functional theory to show that the negatively charged Br vacancy in Cs2AgBiBr6 creates an extremely detrimental donor-yielded (DY) center, which is a typical defect in six-coordinated semiconductors. Ag+ and Bi3+ form a bond by attraction through the anisotropic vacancy charge, generating a midgap state that traps holes within tens of picoseconds. Substituting Ag with indium by doping produces a weak and long In-Bi bond, lifting the defect energy level to the conduction band. Hole trapping slows down by an order or magnitude, and trap-assisted charge recombination decreases 4-fold. The simulations bring atomistic insights into defects of Pb-free double perovskites and provide a defect mitigation strategy for rational design of high-performance optoelectronic devices.

2.
Nanoscale ; 13(23): 10239-10265, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34031683

RESUMO

Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron-phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge-charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...