Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; : 8853282241265059, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023922

RESUMO

The temporomandibular joint (TMJ) disc is an essential protective but vulnerable fibrocartilage. Their high mechanical strength is vital in absorbing loads, reducing friction, and protecting the condylar surface. Many diseases can lead to the destruction or degeneration of the mechanical function of the TMJ disc. Unfortunately, conservative treatment is ineffective in restoring the defective mechanical properties of the discs. Tissue engineering has been investigated as a promising alternative treatment approach to approximate the properties of native tissue. However, it is difficult for tissue-engineered discs to obtain sufficient mechanical properties. Several approaches have been proposed to improve the mechanical properties of tissue-engineered constructs. In this review, we summarized the mechanical properties of native TMJ discs and discussed the current mechanical testing methods. We then summarized the current advances in improving the mechanical properties of TMJ disc tissue-engineered constructs. Moreover, existing challenges and outbreak directions are discussed. This review assists future research in better understanding the mechanical properties of both native and tissue-engineered TMJ discs. It provides new insights into future mechanical property enhancement for TMJ disc tissue engineering.

2.
Dev Biol ; 507: 1-8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38114053

RESUMO

The temporomandibular joint (TMJ), composed of temporal fossa, mandibular condyle and a fibrocartilage disc with upper and lower cavities, is the biggest synovial joint and biomechanical hinge of the craniomaxillofacial musculoskeletal system. The initial events that give rise to TMJ cavities across diverse species are not fully understood. Most studies focus on the pivotal role of molecules such as Indian hedgehog (Ihh) and hyaluronic acid (HA) in TMJ cavitation. Although biologists have observed that mechanical stress plays an irreplaceable role in the development of biological tissues and organs, few studies have been concerned with how mechanical stress regulates TMJ cavitation. Based on the evidence from human or other animal embryos today, it is implicated that mechanical stress plays an essential role in TMJ cavitation. In this review, we discuss the relationship between mechanical stress and TMJ cavitation from evo-devo perspectives and review the clinical features and potential pathogenesis of TMJ dysplasia.


Assuntos
Proteínas Hedgehog , Transtornos da Articulação Temporomandibular , Animais , Humanos , Estresse Mecânico , Proteínas Hedgehog/metabolismo , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/patologia , Côndilo Mandibular/metabolismo , Côndilo Mandibular/patologia , Transtornos da Articulação Temporomandibular/metabolismo , Transtornos da Articulação Temporomandibular/patologia
3.
J Biomed Mater Res B Appl Biomater ; 111(3): 717-729, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36221912

RESUMO

The temporomandibular joint (TMJ) disc, meniscus and intervertebral disc (IVD) are three fibrocartilage discs, which play critical roles in our daily life. Their degeneration contributes to diseases such as TMJ disorders, osteoarthritis and degenerative disc disease, affecting patients' quality of life and causing substantial morbidity and mortality. Interestingly, similar in some aspects of fundamental characteristics, they exhibit differences in other aspects such as biomechanical properties. Highlighting these similarities and differences can not only benefit a comprehensive understanding of them and their pathology but also assist in future research of tissue engineering. Likewise, comparing their tissue engineering in cell sources, scaffold and stimuli can guide imitation and improvement of their engineered discs. However, the anatomical structure, function, and biomechanical characteristics of the IVD, TMJ, and Meniscus have not been compared in any meaningful depth needed to advance current tissue engineering research on these joints, resulting in incomplete understanding of them and their pathology and ultimately limiting future research of tissue engineering. This review, for the first time, comprehensively compares three fibrocartilage discs in those aspects to cast light on their similarities and differences.


Assuntos
Disco Intervertebral , Menisco , Humanos , Disco da Articulação Temporomandibular , Engenharia Tecidual/métodos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...