Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Laryngoscope Investig Otolaryngol ; 4(4): 429-440, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453354

RESUMO

Cochlear implantation has become the standard-of-care for adults and children with severe to profound hearing loss. There is growing evidence that qualitative as well as quantitative deficits in the auditory nerve may affect cochlear implant (CI) outcomes. Auditory neuropathy spectrum disorder (ANSD) is characterized by dysfunctional transmission of sound from the cochlea to the brain due to defective synaptic function or neural conduction. In this review, we examine the precise mechanisms of genetic lesions causing ANSD and the effect of these lesions on CI outcomes. Reviewed data show that individuals with lesions that primarily affect the cochlear sensory system and the synapse, which are bypassed by the CI, have optimal CI outcomes. Individuals with lesions that affect the auditory nerve show poor performance with CIs, likely because neural transmission of the electrical signal from the CI is affected. We put forth a nuanced molecular classification of ANSD that has implications for preoperative counseling for patients with this disorder prior to cochlear implantation. We propose that description of ANSD patients should be based on the molecular site of lesion typically derived from genetic evaluation (synaptopathy vs. neuropathy) as this has implications for expected CI outcomes. Improvements in our understanding of genetic site of lesions and their effects on CI function should lead to better CI outcomes, not just for individuals with auditory neuropathy, but all individuals with hearing loss.

2.
Ann Clin Transl Neurol ; 2(8): 821-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26339676

RESUMO

OBJECTIVE: Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. METHODS: Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. RESULTS: Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. INTERPRETATION: PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease.

3.
BMC Biotechnol ; 12: 20, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22559009

RESUMO

BACKGROUND: Solution-based targeted genomic enrichment (TGE) protocols permit selective sequencing of genomic regions of interest on a massively parallel scale. These protocols could be improved by: 1) modifying or eliminating time consuming steps; 2) increasing yield to reduce input DNA and excessive PCR cycling; and 3) enhancing reproducible. RESULTS: We developed a solution-based TGE method for downstream Illumina sequencing in a non-automated workflow, adding standard Illumina barcode indexes during the post-hybridization amplification to allow for sample pooling prior to sequencing. The method utilizes Agilent SureSelect baits, primers and hybridization reagents for the capture, off-the-shelf reagents for the library preparation steps, and adaptor oligonucleotides for Illumina paired-end sequencing purchased directly from an oligonucleotide manufacturing company. CONCLUSIONS: This solution-based TGE method for Illumina sequencing is optimized for small- or medium-sized laboratories and addresses the weaknesses of standard protocols by reducing the amount of input DNA required, increasing capture yield, optimizing efficiency, and improving reproducibility.


Assuntos
DNA/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...