Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 99(22): 226803, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18233313

RESUMO

We show that the emergent relativistic symmetry of electrons in graphene near its quantum critical point (QCP) implies a crucial importance of the Coulomb interaction. We derive scaling laws, valid near the QCP, that dictate the nontrivial magnetic and charge response of interacting graphene. Our analysis yields numerous predictions for how the Coulomb interaction will be manifested in experimental observables such as the diamagnetic response and electronic compressibility.

2.
Phys Rev Lett ; 96(6): 060401, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16605966

RESUMO

We map out the detuning-magnetization phase diagram for a magnetized (unequal number of atoms in two pairing hyperfine states) gas of fermionic atoms interacting via an s-wave Feshbach resonance (FR). The phase diagram is dominated by the coexistence of a magnetized normal gas and a singlet-paired superfluid with the latter exhibiting a BCS-Bose Einstein condensate crossover with reduced FR detuning. On the BCS side of strongly overlapping Cooper pairs, a sliver of finite-momentum paired Fulde-Ferrell-Larkin-Ovchinnikov magnetized phase intervenes between the phase-separated and normal states. In contrast, for large negative detuning a uniform, polarized superfluid, that is, a coherent mixture of singlet Bose-Einstein-condensed molecules and fully magnetized single-species Fermi sea, is a stable ground state.

3.
Phys Rev Lett ; 97(25): 250401, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17280330

RESUMO

We study a rotating atomic Fermi gas near a narrow s-wave Feshbach resonance in a uniaxial trap with frequencies Omega perpendicular, Omega z. We predict the upper-critical angular velocity, omega c2(delta,T), as a function of temperature T and detuning delta across the BEC-BCS crossover. The suppression of superfluidity at omega c2 is distinct in the BCS and BEC regimes, with the former controlled by depairing and the latter by the dilution of bosonic molecules. At low T and Omega z << Omega perpendicular, in the BCS and crossover regimes of 0 less similar delta less similar delta c, omega c2 is implicitly given by [formula: see text], vanishing as omega c2 approximately Omega perpendicular(1 - delta/delta c)(1/2) near [formula: see text] (with Delta the BCS gap and gamma the resonance width), and extending the bulk result variant Planck's over 2pi omega c2 approximately 2Delta2/epsilonF to a trap. In the BEC regime of delta < 0 we find omega c2-->Omega perpendicular-, where molecular superfluidity is destroyed only by large quantum fluctuations associated with comparable boson and vortex densities.

4.
Phys Rev Lett ; 95(13): 130401, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16197122

RESUMO

We study a one-dimensional gas of fermionic atoms interacting via an s-wave molecular Feshbach resonance. At low energies the system is characterized by two Josephson-coupled Luttinger liquids, corresponding to paired atomic and molecular superfluids. We show that, in contrast to higher dimensions, the system exhibits a quantum phase transition from a phase in which the two superfluids are locked together to one in which, at low energies, quantum fluctuations suppress the Feshbach resonance (Josephson) coupling, effectively decoupling the molecular and atomic superfluids. Experimental signatures of this quantum transition include the appearance of an out-of-phase gapless mode (in addition to the standard gapless in-phase mode) in the spectrum of the decoupled superfluid phase and a discontinuous change in the molecular momentum distribution function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...