Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895817

RESUMO

Background and aims: There is limited and conflicting evidence about the association of erythrocyte fatty acids with coronary artery disease (CAD), particularly in China where the CAD rates are high. Our study aimed to explore the association between erythrocyte fatty acid composition and CAD risk in Chinese adults. Methods: Erythrocyte fatty acids of 314 CAD patients and 314 matched controls were measured by gas chromatography. Multivariable conditional logistic regression and restricted cubic spline models were used to explore the odds ratio with 95% confidence interval (OR, 95% CI) and potential association between erythrocyte fatty acids and CAD risk. Principal component analysis (PCA) was used to analyze further the potential role of various erythrocyte fatty acid patterns in relation to CAD risk. Results: Significant inverse associations were observed between high levels of erythrocyte total n-3 polyunsaturated fatty acids (n-3 PUFA) [ORT3-T1 = 0.18 (0.12, 0.28)], monounsaturated fatty acids (MUFA) [ORT3-T1 = 0.21 (0.13, 0.32)], and the risk of CAD. Conversely, levels of saturated fatty acids (SFAs) and n-6 polyunsaturated fatty acids (n-6 PUFAs) were positively associated with CAD risk [ORT3-T1 = 3.33 (2.18, 5.13), ORT3-T1 = 1.61 (1.06, 2.43)]. No significant association was observed between CAD risk and total trans fatty acids. Additionally, the PCA identifies four new fatty acid patterns (FAPs). The risk of CAD was significantly positively associated with FAP1 and FAP2, while being negatively correlated with FAP3 and FAP4. Conclusion: The different types of erythrocyte fatty acids may significantly alter susceptibility to CAD. Elevated levels of n-3-PUFAs and MUFAs are considered as protective biomarkers against CAD, while SFAs and n-6 PUFAs may be associated with higher CAD risk in Chinese adults. The risk of CAD was positively associated with FAP1 and FAP2, and negatively associated with FAP3 and FAP4. Combinations of erythrocyte fatty acids may be more important markers of CAD development than individual fatty acids or their subgroups.

2.
Int J Biol Macromol ; 261(Pt 1): 129820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286385

RESUMO

Marine-based dietary oils (MDOs), which are naturally obtained from different sources, have been scientifically recommended as potent functional bioactives owing to their therapeutic biological activities; however, they have exhibited plenty of health benefits. Though they are very sensitive to light, temperature, moisture, and oxygen, as well as being chemically unstable and merely oxidized, this may limit their utilization in food and pharmaceutical products. Miro- and nanoencapsulation techniques are considered to be the most promising tactics for enhancing the original characteristics, physiochemical properties, and therapeutic effects of entrapped MDOs. This review focuses on the biomacromolecule-stabilized micro/nanocarriers encompassing a wide range of MDOs. The novel-equipped polysaccharides and protein-based micro/nanocarriers cover microemulsions, microcapsules, nanoemulsions, and nanoliposomes, which have been proven to be encouraging candidates for the entrapment of diverse kinds of MDOs. In addition, the current state-of-the-art loading of various MDOs through polysaccharide and protein-based micro/nanocarriers has been comprehensively discussed and tabulated in detail. Biomacromolecule-stabilized nanocarriers, particularly nanoemulsions and nanoliposomes, are addressed as propitious nanocargos for protection of MDOs in response to thought-provoking features as well as delivering the successful, meticulous release to the desired sites. Gastrointestinal fate (GF) of biopolymeric micro/nanocarriers is fundamentally based on their centrifugation, dimension, interfacial, and physical properties. The external surface of epithelial cells in the lumen is the main site where the absorption of lipid-based nanoparticles takes place. MDO-loaded micro- and nanocarriers with biological origins or structural modifications have shown some novel applications that could be used as future therapies for cardiovascular disorders, thanks to today's cutting-edge medical technology. In the future, further investigations are highly needed to open new horizons regarding the application of polysaccharide and protein-based micro/nanocarriers in food and beverage products with the possibility of commercialization in the near future for industrial use.


Assuntos
Doenças Cardiovasculares , Gorduras Insaturadas na Dieta , Nanopartículas , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Antioxidantes/química , Alimentos , Polissacarídeos/química
3.
Crit Rev Food Sci Nutr ; : 1-28, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37222574

RESUMO

Literature is inconsistent regarding the effects of omega-3 polyunsaturated fatty acids (omega-3 PUFAs) supplementation on patients with metabolic syndrome (MetS) and related cardiovascular diseases (CVDs). Therefore, the aim of this systematic review and meta-analysis is to summarize data from available randomized controlled trials (RCTs) on the effect of omega-3 PUFAs on lipid profiles, blood pressure, and inflammatory markers. We systematically searched PubMed, Embase, and Cochrane Library databases to identify the relevant RCTs until 1 November 2022. Weighed mean difference (WMD) was combined using a random-effects model. Standard methods were applied to assess publication bias, sensitivity analysis, and heterogeneity among included studies. A total of 48 RCTs involving 8,489 subjects met the inclusion criteria. The meta-analysis demonstrated that omega-3 PUFAs supplementation significantly reduced triglyceride (TG) (WMD: -18.18 mg/dl; 95% CI: -25.41, -10.95; p < 0.001), total cholesterol (TC) (WMD: -3.38 mg/dl; 95% CI: -5.97, -0.79; p = 0.01), systolic blood pressure (SBP) (WMD: -3.52 mmHg; 95% CI: -5.69, -1.35; p = 0.001), diastolic blood pressure (DBP) (WMD: -1.70 mmHg; 95% CI: -2.88, -0.51; p = 0.005), interleukin-6 (IL-6) (WMD: -0.64 pg/ml; 95% CI: -1.04, -0.25; p = 0.001), tumor necrosis factor-α (TNF-α) (WMD: -0.58 pg/ml; 95% CI: -0.96, -0.19; p = 0.004), C-reactive protein (CRP) (WMD: -0.32 mg/l; 95% CI: -0.50, -0.14; p < 0.001), and interleukin-1 (IL-1) (WMD: -242.95 pg/ml; 95% CI: -299.40, -186.50; p < 0.001), and significantly increased in high-density lipoprotein (HDL) (WMD: 0.99 mg/dl; 95% CI: 0.18, 1.80; p = 0.02). However, low-density lipoprotein (LDL), monocyte chemoattractant protein-1 (MCP-1), intracellular adhesion molecule-1 (ICAM-1), and soluble endothelial selectin (sE-selectin) were not affected. In subgroup analyses, a more beneficial effect on overall health was observed when the dose was ≤ 2 g/day; Omega-3 PUFAs had a stronger anti-inflammatory effect in patients with CVDs, particularly heart failure; Supplementation with omega-3 PUFAs was more effective in improving blood pressure in MetS patients and blood lipids in CVDs patients, respectively. Meta-regression analysis showed a linear relationship between the duration of omega-3 PUFAs and changes in TG (p = 0.023), IL-6 (p = 0.008), TNF-α (p = 0.005), and CRP (p = 0.025). Supplementation of omega-3 PUFAs had a favorable effect on improving TG, TC, HDL, SBP, DBP, IL-6, TNF-α, CRP, and IL-1 levels, yet did not affect LDL, MCP-1, ICAM-1, and sE-selectin among patients with MetS and related CVDs.

4.
Food Chem X ; 18: 100665, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37091515

RESUMO

China has become increasingly interested in producing olive oil in recent years. In this study, we determined the characteristics of virgin olive oil in five typical cultivars (cv. 'Arbequina,' 'Coratina,' 'Ezhi 8,' 'Frantoio,' and 'Koroneiki') from two of the most suitable production areas for olive cultivation in China. In addition, linear discriminant analysis (LDA) was used to differentiate oils originating from various cultivars and geographical origins. Heatmap was also constructed to describe the differences straightly. Compared to Xichang oils, Longnan oils generally contained higher levels of C18:0, lignans, total esters and total furans, and lower levels of phenolic acids and phenolic alcohols. A variety of cultivars differed in total sterols, hydroxytyrosol derivatives, and volatile compounds. Coratina oils showed excellent properties in two regions. Our findings are closely related to select the optimum olive cultivars in different regions to promote the development of Chinese olive industry scientifically.

5.
Food Chem X ; 17: 100588, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845519

RESUMO

Bischofia polycarpa seed oil is rich in nutrition and positively affects on human health. We analyzed and compared the chemical compositions, antioxidant activities, and quality characteristics of Bischofia polycarpa seed oils using different solvents and cold-pressing. Hx: Iso (n-hexane/isopropanol, 3:2 v/v) had the highest lipid yield (35.13 %), while Folch (chloroform/methanol, 2:1 v/v) had the highest linolenic acid (50.79 %), LnLnLn (43.42 %), and LnLnL (23.43 %). Tocopherols (2108.99 mg/kg) were extracted most efficiently with Folch, whereas phytosterols (3852.97 mg/kg) and squalene (55.21 mg/kg) were extracted most efficiently with petroleum ether. Although the lower phytosterol was obtained using isopropanol, the polyphenol content (271.34 mg GAE/kg) was significantly higher than other solvents, showing the best antioxidant ability. Additionally, polyphenols were observed to be the most significant factor predicting antioxidant activity from the correlation analysis. The above information can provide a useful reference for manufacturers to obtain satisfactory Bischofia polycarpa seed oil.

6.
Food Sci Nutr ; 10(7): 2443-2454, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35844913

RESUMO

Pear is a typically climacteric fruit and highly perishable with a low shelf life owing to extreme metabolic activity after harvesting. The present study aimed to reduce weight loss and improve the firmness of pear during storage. The lemon peel essential oil (LPEO) has gained considerable attention due to being the richest source of bioactive compounds that behaved as a natural antioxidant agent, being cost-effective, and being generally recognized as safe. Edible coatings equipped with a natural antioxidant agent and renewable biopolymers have gained more research fame owing to their involvement in the direction of biodegradability and food safety. In this work, edible skin coating materials (ESCMs) embedded by chitosan (1%) and guar gum (2%) were fabricated, and afterward, five concentrations of LPEO (1, 1.5, 2, 2.5, and 3.0%) were incorporated individually into the ESCMs. Findings revealed that LPEO-ESCMs significantly reduced the weight loss and improved the firmness of pear up to 45 days of storage at 4 ± 2°C. Furthermore, the LPEO-ESCMs have enhanced the antioxidant capacity, antibacterial efficiency, and malondialdehyde level of pear during storage time. It was concluded that 3% of LPEO-ESCMs improved the overall acceptability of pear fruits. Taken together, the novel insights of guar gum and chitosan-based ESCMs entrapped with LPEO will remain a subject of research interest for researchers in the future.

7.
Life Sci ; 301: 120637, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568229

RESUMO

In preceding years, bioactive peptides (BAPs) have piqued escalating attention owing to their multitudinous biological features. To date, many potential BAPs exhibiting anti-cancer activities have been documented; yet, obstacles such as their safety profiles and consumer acceptance continue to exist. Moreover, BAPs have been discovered to facilitate the suppression of Coronavirus Disease 2019 (CoVID-19) and maybe ideal for treating the CoVID-19 infection, as stated by published experimental findings, but their widespread knowledge is scarce. Likewise, there is a cornucopia of BAPs possessing neuroprotective effects that mend neurodegenerative diseases (NDs) by regulating gut microbiota, but they remain a subject of research interest. Additionally, a plethora of researchers have attempted next-generation approaches based on BAPs, but they need scientific attention. The text format of this critical review is organized around an overview of BAPs' versatility and diverse bio functionalities with emphasis on recent developments and novelties. The review is alienated into independent sections, which are related to either BAPs based disease management strategies or next-generation BAPs based approaches. BAPs based anti-cancer, anti-CoVID-19, and neuroprotective strategies have been explored, which may offer insights that could help the researchers and industries to find an alternate regimen against the three aforementioned fatal diseases. To the best of our knowledge, this is the first review that has systematically discussed the next-generation approaches in BAP research. Furthermore, it can be concluded that the BAPs may be optimal for the management of cancer, CoVID-19, and NDs; nevertheless, experimental and preclinical studies are crucial to validate their therapeutic benefits.


Assuntos
Tratamento Farmacológico da COVID-19 , Microbioma Gastrointestinal , Biotecnologia , Humanos , Peptídeos/farmacologia , Peptídeos/uso terapêutico
8.
J Oleo Sci ; 71(3): 333-342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35236793

RESUMO

Peony seed oil is full of nutrition and exert positive effects on human's health. The influences of seven solvents (isopropanol, acetone, Hx:Iso (n-hexane/isopropanol, 3:2 v/v), Chf:Me (chloroform/methanol, 1:1 v/v), ethyl acetate, n-hexane, and petroleum ether) on the oil yields, lipid composition, minor components and antioxidant capacity of peony seed oil were compared in this study. Results indicated that the highest oil yield (35.63%) was obtained using Hx:Iso, while Chf:Me showed the best extraction efficiency for linolenic acid (43.68%), trilinolenoyl-glycerol (15.00%), and dilinolenoyl-linoleoyl-glycerol (18.01%). For minor components, Chf:Me presented a significant advantage in the extraction of tocopherol (601.49 mg/kg), and the peony seed oil extracted with petroleum ether had the highest sterols (4089.82 mg/kg) and squalene contents (66.26 mg/kg). Although the use of isopropanol led to a lower sterol content, its extracts showed a significant higher polyphenol content (68.88 mg GAE/kg) than other solvents and exhibited the strongest antioxidant capacity. Additionally, correlation analysis revealed that polyphenols were the most important minor component for predicting the antioxidant capacity of peony seed oil. The above information is valuable for manufacturers to select suitable solvents to produce peony seed oil with the required levels of fatty acids and minor components for targeted end-use.


Assuntos
Paeonia , Antioxidantes/análise , Ácidos Graxos/análise , Humanos , Óleos de Plantas , Sementes/química , Solventes
9.
Colloids Surf B Biointerfaces ; 199: 111481, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360079

RESUMO

Tuna fish oil (TFO), is a rich source of omega-3 fatty acids comprising particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), which are essential for the human's health enhancement. However, their foremost problems are poor solubility, low bioavailability, and easy oxidization, which limit their wide range of applications in food and pharmaceutical products. The aim of this research is to develop TFO nanoemulsions encapsulating curcumin (CUR) and resveratrol (RES) as co-antioxidants, stabilized with different concentrations of two modified starches including Purity Gum 2000 (PG) and Purity Gum Ultra (PGU). The effect of diverse quantities of modified starches on droplet size, droplet charges, viscosity, and oxidative stability of produced nanoemulsions was assessed at different storage temperatures (4, 25, and 40 °C). Furthermore, to assess the antioxidant activity and capacity of loaded nanoemulsions, DPPH, and ABTS assays were used, respectively. Among various samples, PGU2.5 and PG9 emulsified by PGU and PG2000 had showed the premium results of stability during storage at all temperatures over other formulations. Even at 40 °C, 199.10 µL/mL of PGU2.5 and 258.59 µL/mL of PG9 were required to attain the level of DPPH IC50, which were the lowest concentration as compare to other nanoemulsions. Taken together, it was accredited that co-encapsulation of CUR and RES inside the TFO nanoemulsion-based delivery systems can be efficient for the production of functional foods.


Assuntos
Curcumina , Emulsões , Óleos de Peixe , Humanos , Estresse Oxidativo , Resveratrol
10.
Adv Colloid Interface Sci ; 284: 102251, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32949812

RESUMO

Drug nanodelivery systems (DNDSs) are fascinated cargos to achieve outstanding therapeutic results of various drugs or natural bioactive compounds owing to their unique structures. The efficiency of several pharmaceutical drugs or natural bioactive ingredients is restricted because of their week bioavailability, poor bioaccessibility and pharmacokinetics after orally pathways. In order to handle such constraints, usage of native/natural polysaccharides (NPLS) in fabrication of DNDSs has gained more popularity in the arena of nanotechnology for controlled drug delivery to enhance safety, biocompatibility, better retention time, bioavailability, lower toxicity and enhanced permeability. The main commonly used NPLS in nanoencapsulation systems include chitosan, pectin, alginates, cellulose, starches, and gums recognized as potential materials for fabrication of cargos. Herein, this review is centered on different polysaccharide-based nanocarriers including nanoemulsions, nanohydrogels, nanoliposomes, nanoparticles and nanofibers, which have already served as encouraging candidates for entrapment of therapeutic drugs as well as for their sustained controlled release. Furthermore, the current article explicitly offers comprehensive details regarding application of NPLS-based nanocarriers encapsulating several drugs intended for the handling of numerous disorders, including diabetes, cancer, HIV, malaria, cardiovascular and respiratory as well as skin diseases.


Assuntos
Portadores de Fármacos/química , Nanomedicina/métodos , Nanoestruturas/química , Polissacarídeos/química , Animais , Liberação Controlada de Fármacos , Humanos
11.
Adv Colloid Interface Sci ; 275: 102048, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31757387

RESUMO

Carotenoids retain plenty of health benefits and attracting much attention recently, but they have less resistance to processing stresses, easily oxidized and chemically unstable. Additionally, their application in food and pharmaceuticals are restricted due to some limitations such as poor bioavailability, less solubility and quick release. Nanoencapsulation techniques can be used to protect the carotenoids and to uphold their original characteristics during processing, storage and digestion, improve their physiochemical properties and enhance their health promoting effects. The importance of nanocarriers in foods and pharmaceuticals cannot be denied. This review comprehensively covers recent advances in nanoencapsulation of carotenoids with biopolymeric nanocarriers (polysaccharides and proteins), and lipid-based nanocarriers, their functionalities, aptness and innovative developments in preparation strategies. Furthermore, the present state of the art encapsulation of different carotenoids via biopolymeric and lipid-based nanocarriers have been enclosed and tabulated well. Nanoencapsulation has a vast range of applications for protection of carotenoids. Polysaccharides in combination with different proteins can offer a great avenue to achieve the desired formulation for encapsulation of carotenoids by using different nanoencapsulation strategies. In terms of lipid based nanocarriers, solid lipid nanoparticles and nanostructure lipid carriers are proving as the encouraging candidates for entrapment of carotenoids. Additionally, nanoliposomes and nanoemulsion are also promising and novel-vehicles for the protection of carotenoids against challenging aspects as well as offering an effectual controlled release on the targeted sites. In the future, further studies could be conducted for exploring the application of nanoencapsulated systems in food and gastrointestinal tract (GIT) for industrial applications.


Assuntos
Carotenoides/química , Nanoestruturas/química , Portadores de Fármacos/química , Humanos , Hidrogéis/química , Lipídeos/química , Tamanho da Partícula , Polissacarídeos/química , Proteínas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...