Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(5): 749-755, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38846460

RESUMO

Several limitations in genetic engineering interventions in saffron exist, hindering the development of genetically modified varieties and the widespread application of genetic engineering in this crop. Lack of genome sequence information, the complexity of genetic makeup, and lack of well-established genetic transformation protocols limit its in planta functional validation of genes that would eventually lead toward crop optimization. In this study, we demonstrate agro infiltration in leaves of adult plants and whole corm before sprouting are suitable for transient gene silencing in saffron using Tobacco Rattle Virus (TRV) based virus-induced gene silencing (VIGS) targeting phytoene desaturase (PDS). Silencing of PDS resulted in bleached phenotype in leaves in both methods. TRV-mediated VIGS could be attained in saffron leaves and corms, providing an opportunity for functional genomics studies in this expensive spice crop. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01459-0.

2.
J Exp Bot ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738685

RESUMO

Geophytic plants synchronize growth and quiescence with the external environment to survive and thrive under changing seasons. Besides seasonal growth adaptation, dormancy and sprouting are critical factors determining crop yield and market supply as various geophytes also serve as major food, floriculture, and ornamental crops. Dormancy in such crops decides crop availability in the market, as most of such crops are consumed during the dormant stage. On the other hand, uniform/maximal sprouting is crucial for maximum yield. Thus, dormancy and sprouting regulation have great economic importance. Dormancy-sprouting cycles in geophytes are regulated by genetic, exogenous (environmental), and endogenous (genetic, metabolic and hormonal, etc.) factors. Comparatively, the temperature is more dominant in regulating dormancy and sprouting in geophytes, unlike aboveground tissues, where both photoperiod and temperature control are involved. Despite huge economic importance, studies concerning the regulation of dormancy and sprouting are scarce in the majority of geophytes. To date, only a few molecular factors involved in the process have been suggested. Recently, omics studies on molecular and metabolic factors involved in dormancy and growth regulations of underground vegetative tissues have provided more insight into the mechanism. Here, we discuss current knowledge of the environmental and molecular regulation and control of dormancy and sprouting in geophytes and discuss challenges/questions that need to be addressed in the future for crop improvement.

3.
Physiol Plant ; 176(2): e14285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606764

RESUMO

AIMS: Geophytic plants have evolved to develop underground storage organs (USO) in the active growing season to withstand harsh environments as well as to coordinate growth and reproduction when conditions are favourable. Saffron is an autumn flowering geophyte and an expensive spice crop restricted to certain geographical locations in the world. Saffron, being sterile, does not produce seeds and thus propagates only through corms, the quality of which determines its yield. Corm development in saffron is unexplored and the underlying molecular mechanism is still elusive. In this study, we performed an extensive characterisation of the transcriptional dynamics in the source (leaf) and sink (corm) tissues during corm development in saffron. KEY RESULTS: Via morphological and transcriptome studies, we identified molecular factors regulating corm development process in saffron, which defined corm development into three stages: the initiation stage demonstrates enhanced vegetative growth aboveground and swelling of shoot base belowground due to active cell division & carbohydrate storage; the bulking stage comprises of increased source and sink strength, active photosynthesis, circadian gating and starch accumulation; the maturation stage represents reduced source and sink strength, lowered photosynthesis, sugar transport, starch synthesis and cell cycle arrest. UTILITY: The global view of transcriptional changes in source and sink identifies similar and new molecular factors involved in the saffron corm development process compared to USO formation in other geophytes and provides a valuable resource for dissecting the molecular network underlying the corm development. We propose a hypothetical model based on data analysis, of how molecular factors via environmental cues can regulate the corm development process in saffron.


Assuntos
Crocus , Crocus/genética , Crocus/metabolismo , Transcriptoma/genética , Folhas de Planta , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...