Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1491, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932066

RESUMO

Chiral effects originate from the lack of inversion symmetry within the lattice unit cell or sample's shape. Being mapped onto magnetic ordering, chirality enables topologically non-trivial textures with a given handedness. Here, we demonstrate the existence of a static 3D texture characterized by two magnetochiral parameters being magnetic helicity of the vortex and geometrical chirality of the core string itself in geometrically curved asymmetric permalloy cap with a size of 80 nm and a vortex ground state. We experimentally validate the nonlocal chiral symmetry breaking effect in this object, which leads to the geometric deformation of the vortex string into a helix with curvature 3 µm-1 and torsion 11 µm-1. The geometric chirality of the vortex string is determined by the magnetic helicity of the vortex texture, constituting coupling of two chiral parameters within the same texture. Beyond the vortex state, we anticipate that complex curvilinear objects hosting 3D magnetic textures like curved skyrmion tubes and hopfions can be characterized by multiple coupled magnetochiral parameters, that influence their statics and field- or current-driven dynamics for spin-orbitronics and magnonics.

2.
Small ; 18(12): e2105219, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044074

RESUMO

Low-dimensional magnetic architectures including wires and thin films are key enablers of prospective ultrafast and energy efficient memory, logic, and sensor devices relying on spin-orbitronic and magnonic concepts. Curvilinear magnetism emerged as a novel approach in material science, which allows tailoring of the fundamental anisotropic and chiral responses relying on the geometrical curvature of magnetic architectures. Much attention is dedicated to magnetic wires of Möbius, helical, or DNA-like double helical shapes, which act as prototypical objects for the exploration of the fundamentals of curvilinear magnetism. Although there is a bulk number of original publications covering fabrication, characterization, and theory of magnetic wires, there is no comprehensive review of the theoretical framework of how to describe these architectures. Here, theoretical activities on the topic of curvilinear magnetic wires and narrow nanoribbons are summarized, providing a systematic review of the emergent interactions and novel physical effects caused by the curvature. Prospective research directions of curvilinear spintronics and spin-orbitronics are discussed, the fundamental framework for curvilinear magnonics are outlined, and mechanically flexible curvilinear architectures for soft robotics are introduced.


Assuntos
Magnetismo , Imãs , Anisotropia , Estudos Prospectivos
3.
Soft Matter ; 17(45): 10322-10333, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34734955

RESUMO

Within the framework of continuum theory, we draw a parallel between ferromagnetic materials and nematic liquid crystals confined on curved surfaces, which are both characterized by local interaction and anchoring potentials. We show that the extrinsic curvature of the shell combined with the out-of-plane component of the director field gives rise to chirality effects. This interplay produces an effective energy term reminiscent of the chiral term in cholesteric liquid crystals, with the curvature tensor acting as a sort of anisotropic helicity. We discuss also how the different nature of the order parameter, a vector in ferromagnets and a tensor in nematics, yields different textures on surfaces with the same topology as the sphere. In particular, we show that the extrinsic curvature governs the ground state configuration on a nematic spherical shell, favouring two antipodal disclinations of charge +1 on small particles and four +1/2 disclinations of charge located at the vertices of a square inscribed in a great circle on larger particles.

4.
Nano Lett ; 20(11): 8157-8162, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32986440

RESUMO

Antiferromagnets host exotic quasiparticles, support high frequency excitations and are key enablers of the prospective spintronic and spin-orbitronic technologies. Here, we propose a concept of a curvilinear antiferromagnetism where material responses can be tailored by a geometrical curvature without the need to adjust material parameters. We show that an intrinsically achiral one-dimensional (1D) curvilinear antiferromagnet behaves as a chiral helimagnet with geometrically tunable Dzyaloshinskii-Moriya interaction (DMI) and orientation of the Néel vector. The curvature-induced DMI results in the hybridization of spin wave modes and enables a geometrically driven local minimum of the low-frequency branch. This positions curvilinear 1D antiferromagnets as a novel platform for the realization of geometrically tunable chiral antiferromagnets for antiferromagnetic spin-orbitronics and fundamental discoveries in the formation of coherent magnon condensates in the momentum space.

5.
Phys Rev Lett ; 120(6): 067201, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481278

RESUMO

Typically, the chiral magnetic Skyrmion is a single-state excitation. Here we propose a system, where multiplet of Skyrmion states appears and one of these states can be the ground one. We show that the presence of a localized curvilinear defect drastically changes the magnetic properties of a thin perpendicularly magnetized ferromagnetic film. For a large enough defect amplitude a discrete set of equilibrium magnetization states appears forming a ladder of energy levels. Each equilibrium state has either a zero or a unit topological charge; i.e., topologically trivial and Skyrmion multiplets generally appear. Transitions between the levels with the same topological charge are allowed and can be utilized to encode and switch a bit of information. There is a wide range of geometrical and material parameters, where the Skyrmion level has the lowest energy. Thus, periodically arranged curvilinear defects can result in a Skyrmion lattice as the ground state.

6.
Sci Rep ; 8(1): 866, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339741

RESUMO

Crystals with broken inversion symmetry can host fundamentally appealing and technologically relevant periodical or localized chiral magnetic textures. The type of the texture as well as its magnetochiral properties are determined by the intrinsic Dzyaloshinskii-Moriya interaction (DMI), which is a material property and can hardly be changed. Here we put forth a method to create new artificial chiral nanoscale objects with tunable magnetochiral properties from standard magnetic materials by using geometrical manipulations. We introduce a mesoscale Dzyaloshinskii-Moriya interaction that combines the intrinsic spin-orbit and extrinsic curvature-driven DMI terms and depends both on the material and geometrical parameters. The vector of the mesoscale DMI determines magnetochiral properties of any curved magnetic system with broken inversion symmetry. The strength and orientation of this vector can be changed by properly choosing the geometry. For a specific example of nanosized magnetic helix, the same material system with different geometrical parameters can acquire one of three zero-temperature magnetic phases, namely, phase with a quasitangential magnetization state, phase with a periodical state and one intermediate phase with a periodical domain wall state. Our approach paves the way towards the realization of a new class of nanoscale spintronic and spinorbitronic devices with the geometrically tunable magnetochirality.

7.
Sci Rep ; 6: 23316, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27008975

RESUMO

Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii-Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii-Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii-Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism.

9.
Sci Rep ; 5: 11370, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26079895

RESUMO

We found resonantly excited precession motions of a three-dimensional vortex core in soft magnetic nanospheres and controllable precession frequency with the sphere diameter 2R, as studied by micromagnetic numerical and analytical calculations. The precession angular frequency for an applied static field HDC is given as ωMV = γeffHDC, where γeff = γ〈mΓ〉 is the effective gyromagnetic ratio in collective vortex dynamics, with the gyromagnetic ratio γ and the average magnetization component 〈mΓ〉 of the ground-state vortex in the core direction. Fitting to the micromagnetic simulation data for 〈mΓ〉 yields a simple explicit form of 〈mΓ〉 ≈ (73.6 ± 3.4)(lex/2R)(2.20±0.14), where lex is the exchange length of a given material. This dynamic behavior might serve as a foundation for potential bio-applications of size-specific resonant excitation of magnetic vortex-state nanoparticles, for example, magnetic particle resonance imaging.

10.
Phys Rev Lett ; 114(19): 197204, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024195

RESUMO

We show that the interaction of the magnetic subsystem of a curved magnet with the magnet curvature results in the coupling of a topologically nontrivial magnetization pattern and topology of the object. The mechanism of this coupling is explored and illustrated by an example of a ferromagnetic Möbius ring, where a topologically induced domain wall appears as a ground state in the case of strong easy-normal anisotropy. For the Möbius geometry, the curvilinear form of the exchange interaction produces an additional effective Dzyaloshinskii-like term which leads to the coupling of the magnetochirality of the domain wall and chirality of the Möbius ring. Two types of domain walls are found, transversal and longitudinal, which are oriented across and along the Möbius ring, respectively. In both cases, the effect of magnetochirality symmetry breaking is established. The dependence of the ground state of the Möbius ring on its geometrical parameters and on the value of the easy-normal anisotropy is explored numerically.

11.
Phys Rev Lett ; 112(25): 257203, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-25014827

RESUMO

A magnetic energy functional is derived for an arbitrary curved thin shell on the assumption that the magnetostatic effects can be reduced to an effective easy-surface anisotropy; it can be used for solving both static and dynamic problems. General static solutions are obtained in the limit of a strong anisotropy of both signs (easy-surface and easy-normal cases). It is shown that the effect of the curvature can be treated as the appearance of an effective magnetic field, which is aligned along the surface normal for the case of easy-surface anisotropy and is tangential to the surface for the case of easy-normal anisotropy. In general, the existence of such a field excludes the solutions that are strictly tangential or strictly normal to the surface. As an example, we consider static equilibrium solutions for a cone surface magnetization.

12.
Nano Lett ; 12(8): 3961-6, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22738285

RESUMO

Modifying the curvature in magnetic nanostructures is a novel and elegant way toward tailoring physical phenomena at the nanoscale, allowing one to overcome limitations apparent in planar counterparts. Here, we address curvature-driven changes of static magnetic properties in cylindrically curved magnetic segments with different radii of curvature. The curved architectures are prepared by capping nonmagnetic micrometer- and nanometer-sized rolled-up membranes with a soft-magnetic 20 nm thick permalloy (Ni(80)Fe(20)) film. A quantitative comparison between the magnetization reversal processes in caps with different diameters is given. The phase diagrams of magnetic equilibrium domain patterns (diameter versus length) are generated. For this, joint experimental, including X-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM), and theoretical studies are carried out. The anisotropic magnetostatic interaction in cylindrically curved architectures originating from the thickness gradient reduces substantially the magnetostatic interaction between closely packed curved nanowires. This feature is beneficial for racetrack memory devices, since a much higher areal density might be achieved than possible with planar counterparts.

13.
Phys Rev Lett ; 98(5): 056604, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17358881

RESUMO

The spin-transfer effect is investigated for the vortex state of a magnetic nanodot. A spin current is shown to act similarly to an effective magnetic field perpendicular to the nanodot. Then a vortex with magnetization (polarity) parallel to the current polarization is energetically favorable. Following a simple energy analysis and using direct spin-lattice simulations, we predict the polarity switching of a vortex. For magnetic storage devices, an electric current is more effective to switch the polarity of a vortex in a nanodot than the magnetic field.

14.
Phys Rev Lett ; 93(16): 167201, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15525024

RESUMO

We investigate the motion of a nonplanar vortex in a circular easy-plane magnet with a rotating in-plane magnetic field. Our numerical simulations of the Landau-Lifshitz equations show that the vortex tends to a circular limit trajectory, with an orbit frequency which is lower than the driving field frequency. To describe this we develop a new collective variable theory by introducing additional variables which account for the internal degrees of freedom of the vortex core, strongly coupled to the translational motion. We derive the evolution equations for these collective variables and find limit-cycle solutions whose characteristics are in qualitative agreement with the simulations of the many-spin system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...