Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6876-6879, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947420

RESUMO

Scalability of implantable neural interface devices is a critical bottleneck in enhancing the performance of cortical Brain-Computer Interfaces (BCIs) through access to high density and multi-areal cortical signals. This is challenging to achieve through current monolithic constructs with 100-200 channels, often with bulky tethering and packaging, and a spatially distributed sensor approach has recently been explored by a few groups, including our laboratories [1]. In this paper, we describe a microscale (500 µm) programmable neural stimulator in the context of an epicortical wireless networked system of sub-mm "Neurograins" with wireless energy harvesting (near 1 GHz) and bidirectional telemetry. Stimulation neurograins are post-processed to integrate poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) planar electrodes or intracortical penetrating microwires, and ensembles of microdevices are hermetically encapsulated using liquid-crystal polymer (LCP) thermocompression for chronic implantability. Radio-frequency power and telecommunications management are handled by a wearable external "Epidermal Skinpatch" unit to cater to chronic clinical implant considerations. We describe the stimulation neurograin performance specifications and proof-of-concept in bench top and ex vivo rodent platforms.


Assuntos
Interfaces Cérebro-Computador , Tecnologia sem Fio , Eletrodos , Próteses e Implantes , Ondas de Rádio , Telemetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...