Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunol ; 21(2): 155-65, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19106231

RESUMO

Adoptive transfer (AT) T-cell therapy provides significant clinical benefits in patients with advanced melanoma. However, approaches to non-invasively visualize the persistence of transferred T cells are lacking. We examined whether positron emission tomography (PET) can monitor the distribution of self-antigen-specific T cells engineered to express an herpes simplex virus 1 thymidine kinase (sr39tk) PET reporter gene. Micro-PET imaging using the sr39tk-specific substrate 9-[4-[(18)F]fluoro-3-(hydroxymethyl)-butyl]guanine ([(18)F]FHBG) enabled the detection of transplanted T cells in secondary lymphoid organs of recipient mice over a 3-week period. Tumor responses could be predicted as early as 3 days following AT when a >25-fold increase of micro-PET signal in the spleen and 2-fold increase in lymph nodes (LNs) were observed in mice receiving combined immunotherapy versus control mice. The lower limit of detection was approximately 7 x 10(5) T cells in the spleen and 1 x 10(4) T cells in LNs. Quantification of transplanted T cells in the tumor was hampered by the sr39tk-independent trapping of [(18)F]FHBG within the tumor architecture. These data support the feasibility of using PET to visualize the expansion, homing and persistence of transferred T cells. PET may have significant clinical utility by providing the means to quantify anti-tumor T cells throughout the body and provide early correlates for treatment efficacy.


Assuntos
Genes Reporter/genética , Epitopos Imunodominantes/metabolismo , Melanoma Experimental/imunologia , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/metabolismo , Animais , Feminino , Técnicas de Transferência de Genes , Genes Reporter/imunologia , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Imunoterapia Adotiva , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monitorização Imunológica/tendências , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Linfócitos T/diagnóstico por imagem , Linfócitos T/imunologia , Antígeno gp100 de Melanoma
2.
Nat Med ; 14(7): 783-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18542051

RESUMO

Monitoring immune function with molecular imaging could have a considerable impact on the diagnosis and treatment evaluation of immunological disorders and therapeutic immune responses. Positron emission tomography (PET) is a molecular imaging modality with applications in cancer and other diseases. PET studies of immune function have been limited by a lack of specialized probes. We identified [(18)F]FAC (1-(2'-deoxy-2'-[(18)F]fluoroarabinofuranosyl) cytosine) by differential screening as a new PET probe for the deoxyribonucleotide salvage pathway. [(18)F]FAC enabled visualization of lymphoid organs and was sensitive to localized immune activation in a mouse model of antitumor immunity. [(18)F]FAC microPET also detected early changes in lymphoid mass in systemic autoimmunity and allowed evaluation of immunosuppressive therapy. These data support the use of [(18)F]FAC PET for immune monitoring and suggest a wide range of clinical applications in immune disorders and in certain types of cancer.


Assuntos
Desoxicitidina/análogos & derivados , Radioisótopos de Flúor , Linfocintigrafia , Tomografia por Emissão de Pósitrons/métodos , Cintilografia/métodos , Animais , Desoxicitidina/química , Fluordesoxiglucose F18 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade , Distribuição Tecidual
3.
Proc Natl Acad Sci U S A ; 104(6): 1937-42, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17261805

RESUMO

2-[(18)F]Fluoro-2-deoxy-d-glucose positron emission tomography ([(18)F]FDG PET) detection of the up-regulated glycolysis associated with malignant transformation is a noninvasive imaging technique used extensively in cancer diagnosis. Although striking similarities exist in glucose transport and metabolism between tumor cells and activated immune cells, the potential use of [(18)F]FDG PET for the diagnosis and evaluation of autoimmune disorders has not been systematically investigated. Here we ask whether [(18)F]FDG PET in conjunction with computed tomography (CT) could be used to monitor a complex autoimmune disorder such as murine experimental autoimmune encephalomyelitis (EAE) and whether this approach is sensitive enough to evaluate therapeutic interventions. We found that (i) coregistration of metabolic (i.e., microPET) and high-resolution anatomical (i.e., CT) images allows serial quantification of glycolysis with [(18)F]FDG in various spinal column segments; (ii) [(18)F]FDG PET/CT can detect the increased glycolysis associated with paralysis-causing inflammatory infiltrates in the spinal cord; and (iii) the [(18)F]FDG measure of glycolysis in the spinal cord is sensitive to systemic immunosuppressive therapy. These results highlight the potential use of serial [(18)F]FDG PET/CT imaging to monitor neuroinflammation in EAE and suggest that similar approaches could be applied to the diagnosis and evaluation of other autoimmune and inflammatory disorders in animal models and in humans.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Tomografia por Emissão de Pósitrons , Medula Espinal/patologia , Animais , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Tomografia Computadorizada por Raios X
4.
Proc Natl Acad Sci U S A ; 102(48): 17412-7, 2005 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-16293690

RESUMO

Current methodologies that monitor immune responses rely on invasive techniques that sample tissues at a given point in time. New technologies are needed to elucidate the temporal patterns of immune responses and the spatial distribution of immune cells on a whole-body scale. We describe a noninvasive, quantitative, and tomographic approach to visualize a primary anti-tumor immune response by using positron emission tomography (PET). Bone marrow chimeric mice were generated by engraftment of hematopoietic stem and progenitor cells transduced with a trifusion reporter gene encoding synthetic Renilla luciferase (hRluc), EGFP, and Herpes virus thymidine kinase (sr39TK). Mice were challenged with the Moloney murine sarcoma and leukemia virus complex (M-MSV/M-MuLV), and the induced immune response was monitored by using PET. Hematopoietic cells were visualized by using 9-[4-[(18)F]fluoro-3-(hydroxymethyl)butyl]guanine ([(18)F]FHBG), a radioactive substrate specific for the sr39TK PET reporter protein. Immune cell localization and expansion were seen at the tumor and draining lymph nodes (DLNs). 2-[(18)F]fluoro-2-deoxy-D-glucose ([(18)F]FDG), which is sequestered in metabolically active cells, was used to follow tumor growth and regression. Elevated glucose metabolism was also seen in activated lymphocytes in the DLNs by using the [(18)F]FDG probe. When M-MSV/M-MuLV-challenged mice were treated with the immunosuppressive drug dexamethasone, activation and expansion of immune cell populations in the DLNs could no longer be detected with PET imaging. The method we describe can be used to kinetically measure the induction and therapeutic modulations of cell-mediated immune responses.


Assuntos
Vírus da Leucemia Murina de Moloney/imunologia , Vírus do Sarcoma Murino de Moloney/imunologia , Infecções por Retroviridae/imunologia , Sarcoma Experimental/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Transplante de Medula Óssea , Dexametasona/uso terapêutico , Citometria de Fluxo , Fluordesoxiglucose F18 , Proteínas de Fluorescência Verde , Guanina/análogos & derivados , Células-Tronco Hematopoéticas/diagnóstico por imagem , Imuno-Histoquímica , Luciferases , Linfonodos/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Tomografia por Emissão de Pósitrons/métodos , Sarcoma Experimental/diagnóstico por imagem , Sarcoma Experimental/tratamento farmacológico , Timidina Quinase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...