Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626780

RESUMO

Wool derived keratin, due to its demonstrated ability to promote bone formation, has been suggested as a potential bioactive material for implant surfaces. The aim of this study was to assess the effects of keratin-coated titanium on osteoblast functionin vitroand bone healingin vivo. Keratin-coated titanium surfaces were fabricated via solvent casting and molecular grafting. The effect of these surfaces on the attachment, osteogenic gene, and osteogenic protein expression of MG-63 osteoblast-like cells were quantifiedin vitro. The effect of these keratin-modified surfaces on bone healing over three weeks using an intraosseous calvaria defect was assessed in rodents. Keratin coating did not affect MG-63 proliferation or viability, but enhanced osteopontin, osteocalcin and bone morphogenetic expressionin vitro. Histological analysis of recovered calvaria specimens showed osseous defects covered with keratin-coated titanium had a higher percentage of new bone area two weeks after implantation compared to that in defects covered with titanium alone. The keratin-coated surfaces were biocompatible and stimulated osteogenic expression in adherent MG-63 osteoblasts. Furthermore, a pilot preclinical study in rodents suggested keratin may stimulate earlier intraosseous calvaria bone healing.


Assuntos
Regeneração Óssea , Proliferação de Células , Materiais Revestidos Biocompatíveis , Queratinas , Osteoblastos , Osteogênese , Crânio , Titânio , Titânio/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Regeneração Óssea/efeitos dos fármacos , Animais , Queratinas/química , Queratinas/metabolismo , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Crânio/efeitos dos fármacos , Crânio/lesões , Osteogênese/efeitos dos fármacos , Ratos , Propriedades de Superfície , Masculino , Linhagem Celular , Adesão Celular/efeitos dos fármacos , Teste de Materiais , Sobrevivência Celular/efeitos dos fármacos , Ratos Sprague-Dawley
3.
Chemosphere ; 298: 134349, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35306058

RESUMO

Anthropogenic contaminants can have a variety of adverse effects on exposed organisms, including genotoxicity in the form of DNA damage. One of the most commonly used methods to evaluate genotoxicity in exposed organisms is the micronucleus (MN) assay. It provides an efficient assessment of chromosomal impairment due to either chromosomal rupture or mis-segregation during mitosis. However, evaluating chromosomal damage in the MN assay through manual microscopy is a highly time-consuming and somewhat subjective process. High-throughput evaluation with automated image analysis could reduce subjectivity and increase accuracy and throughput. In this study, we optimised and streamlined the HiTMiN assay, adapting the MN assay to a miniaturised, 96-well plate format with reduced steps, and applied it to both primary cells from green turtle fibroblasts (GT12s-p) and a freshwater fish hepatoma cell line (PLHC-1). Image analysis using both commercial (Columbus) and freely available (CellProfiler) software automated the scoring of MN, with improved precision and drastically reduced time compared to manual scoring and other available protocols. The assay was validated through exposure to two inorganic (chromium and cobalt) and one organic (the herbicide metolachlor) compounds, which are genotoxicants of concern in the marine environment. All compounds tested induced MN formation below cytotoxic concentrations. The HiTMiN assay presented here greatly increases the suitability of the MN assay as a quick, affordable, sensitive and accurate assay to measure genotoxicity of environmental samples in different cell lines.


Assuntos
Núcleo Celular , Dano ao DNA , Animais , Ensaios de Triagem em Larga Escala , Testes para Micronúcleos/métodos , Microscopia
4.
Sci Rep ; 12(1): 662, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027585

RESUMO

Peripheral glial cell transplantation with Schwann cells (SCs) is a promising approach for treating spinal cord injury (SCI). However, improvements are needed and one avenue to enhance regenerative functional outcomes is to combine growth factors with cell transplantation. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) are neuroprotective, and a combination of these factors has improved outcomes in rat SCI models. Thus, transplantation of SCs combined with VEGF and PDGF may further improve regenerative outcomes. First, however, we must understand how the two factors modulate SCs. In this in vitro study, we show that an inflammatory environment decreased the rate of SC-mediated phagocytosis of myelin debris but the addition of VEGF and PDGF (alone and combined) improved phagocytosis. Cytokine expression by SCs in the inflammatory environment revealed that addition of PDGF led to significantly lower level of pro-inflammatory cytokine, TNF-α, but IL-6 and anti-inflammatory cytokines (TGF-ß and IL-10), remained unaltered. Further, PDGF was able to decrease the expression of myelination associated gene Oct6 in the presence of inflammatory environment. Overall, these results suggest that the use of VEGF and/or PDGF combined with SC transplantation may be beneficial in SCI therapy.


Assuntos
Inflamação/patologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/genética , Fármacos Neuroprotetores , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Ratos , Células de Schwann/transplante , Traumatismos da Medula Espinal/terapia , Fator de Necrose Tumoral alfa/metabolismo
5.
mSphere ; 6(5): e0065921, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34585962

RESUMO

Infection with mosquito-borne arthritogenic alphaviruses, such as Ross River virus (RRV) and Barmah Forest virus (BFV), can lead to long-lasting rheumatic disease. Existing mouse models that recapitulate the disease signs and immunopathogenesis of acute RRV and BFV infection have consistently shown relevance to human disease. However, these mouse models, which chiefly model hindlimb dysfunction, may be prone to subjective interpretation when scoring disease. Assessment is therefore time-consuming and requires experienced users. The DigiGait system provides video-based measurements of movement, behavior, and gait dynamics in mice and small animals. Previous studies have shown DigiGait to be a reliable system to objectively quantify changes in gait in other models of pain and inflammation. Here, for the first time, we determine measurable differences in the gait of mice with infectious arthritis using the DigiGait system. Statistically significant differences in paw area and paw angle were detected during peak disease in RRV-infected mice. Significant differences in temporal gait parameters were also identified during the period of peak disease in RRV-infected mice. These trends were less obvious or absent in BFV-infected mice, which typically present with milder disease signs than RRV-infected mice. The DigiGait system therefore provides an objective model of variations in gait dynamics in mice acutely infected with RRV. DigiGait is likely to have further utility for murine models that develop severe forms of infectious arthritis resulting in hindlimb dysfunction like RRV. IMPORTANCE Mouse models that accurately replicate the immunopathogenesis and clinical disease of alphavirus infection are vital to the preclinical development of therapeutic strategies that target alphavirus infection and disease. Current models rely on subjective scoring made through experienced observation of infected mice. Here, we demonstrate how the DigiGait system, and interventions on mice to use this system, can make an efficient objective assessment of acute disease progression and changes in gait in alphavirus-infected mice. Our study highlights the importance of measuring gait parameters in the assessment of models of infectious arthritis.


Assuntos
Infecções por Alphavirus/virologia , Artrite Infecciosa/fisiopatologia , Artrite Infecciosa/virologia , Análise da Marcha/veterinária , Ross River virus/fisiologia , Infecções por Alphavirus/patologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Ross River virus/patogenicidade , Corrida , Caminhada
6.
J Vis Exp ; (159)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32449707

RESUMO

Spinal cord injury (SCI) largely leads to irreversible and permanent loss of function, most commonly as a result of trauma. Several treatment options, such as cell transplantation methods, are being researched to overcome the debilitating disabilities arising from SCI. Most pre-clinical animal trials are conducted in rodent models of SCI. While rat models of SCI have been widely used, mouse models have received less attention, even though mouse models can have significant advantages over rat models. The small size of mice equates to lower animal maintenance costs than for rats, and the availability of numerous transgenic mouse models is advantageous for many types of studies. Inducing repeatable and precise injury in the animals is the primary challenge for SCI research, which in small rodents requires high-precision surgery. The transection-type injury model has been a commonly used injury model over the last decade for transplantation-based therapeutic research, however a standardized method for inducing a complete transection-type injury in mice does not exist. We have developed a surgical protocol for inducing a complete transection type injury in C57BL/6 mice at thoracic vertebral level 10 (T10). The procedure uses a small tip drill instead of rongeurs to precisely remove the lamina, after which a thin blade with rounded cutting edge is used to induce the spinal cord transection. This method leads to reproducible transection-type injury in small rodents with minimal collateral muscle and bone damage and therefore minimizes confounding factors, specifically where behavioral functional outcomes are analyzed.


Assuntos
Traumatismos da Medula Espinal/patologia , Pontos de Referência Anatômicos , Animais , Modelos Animais de Doenças , Feminino , Laminectomia , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/cirurgia
7.
J Clin Invest ; 130(6): 2920-2927, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32045385

RESUMO

BACKGROUNDInterventions that interrupt Plasmodium vivax transmission or eliminate dormant P. vivax liver-stage parasites will be essential for malaria elimination. Development of these interventions has been hindered by the lack of P. vivax in vitro culture and could be accelerated by a safe and reproducible clinical model in malaria-naive individuals.METHODSHealthy, malaria-naive adults were enrolled in 2 studies to assess the safety, infectivity, and transmissibility of a new P. vivax isolate. Participants (Study 1, n = 2; Study 2, n = 24) were inoculated with P. vivax-infected red blood cells to initiate infection, and were treated with artemether-lumefantrine (Study 1) or chloroquine (Study 2). Primary endpoints were safety and infectivity of the new isolate. In Study 2, transmission to mosquitoes was also evaluated using mosquito feeding assays, and sporozoite viability was assessed using in vitro cultured hepatocytes.RESULTSParasitemia and gametocytemia developed in all participants and was cleared by antimalarial treatment. Adverse events were mostly mild or moderate and none were serious. Sixty-nine percent of participants (11/16) were infectious to Anopheles mosquitoes at peak gametocytemia. Mosquito infection rates reached 97% following membrane feeding with gametocyte-enriched blood, and sporozoites developed into liver-stage schizonts in culture.CONCLUSIONWe have demonstrated the safe, reproducible, and efficient transmission of P. vivax gametocytes from humans to mosquitoes, and have established an experimental model that will accelerate the development of interventions targeting multiple stages of the P. vivax life cycle.TRIAL REGISTRATIONACTRN12614000930684 and ACTRN12616000174482.FUNDING(Australian) National Health and Medical Research Council Program Grant 1132975 (Study 1). Bill and Melinda Gates Foundation (OPP1111147) (Study 2).


Assuntos
Combinação Arteméter e Lumefantrina/administração & dosagem , Cloroquina/administração & dosagem , Malária Vivax , Plasmodium vivax/metabolismo , Adolescente , Adulto , Animais , Anopheles , Feminino , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/metabolismo , Malária Vivax/transmissão , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Projetos Piloto
8.
PLoS Negl Trop Dis ; 14(1): e0008017, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978058

RESUMO

The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.


Assuntos
Burkholderia pseudomallei , Melioidose/microbiologia , Bulbo Olfatório/microbiologia , Nervo Olfatório/microbiologia , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Animais , Antitireóideos/administração & dosagem , Antitireóideos/farmacologia , Genes Reporter , Células Gigantes , Humanos , Melioidose/patologia , Metimazol/administração & dosagem , Metimazol/farmacologia , Camundongos , Camundongos Transgênicos , Mucosa Respiratória/lesões , Mucosa Respiratória/microbiologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética
9.
Front Cell Infect Microbiol ; 10: 607779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489937

RESUMO

Chlamydia pneumoniae can infect the brain and has been linked to late-onset dementia. Chlamydia muridarum, which infects mice, is often used to model human chlamydial infections. While it has been suggested to be also important for modelling brain infection, nervous system infection by C. muridarum has not been reported in the literature. C. pneumoniae has been shown to infect the olfactory bulb in mice after intranasal inoculation, and has therefore been suggested to invade the brain via the olfactory nerve; however, nerve infection has not been shown to date. Another path by which certain bacteria can reach the brain is via the trigeminal nerve, but it remains unknown whether Chlamydia species can infect this nerve. Other bacteria that can invade the brain via the olfactory and/or trigeminal nerve can do so rapidly, however, whether Chlamydia spp. can reach the brain earlier than one-week post inoculation remains unknown. In the current study, we showed that C. muridarum can within 48 h invade the brain via the olfactory nerve, in addition to infecting the trigeminal nerve. We also cultured the glial cells of the olfactory and trigeminal nerves and showed that C. muridarum readily infected the cells, constituting a possible cellular mechanism explaining how the bacteria can invade the nerves without being eliminated by glial immune functions. Further, we demonstrated that olfactory and trigeminal glia differed in their responses to C. muridarum, with olfactory glia showing less infection and stronger immune response than trigeminal glia.


Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Animais , Sistema Nervoso Central , Camundongos , Neuroglia , Nervo Olfatório , Nervo Trigêmeo
10.
ACS Appl Mater Interfaces ; 11(10): 9814-9823, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30724549

RESUMO

Three-dimensional (3D) multicellular structures allow cells to behave and interact with each other in a manner that mimics the in vivo environment. In recent years, many 3D cell culture methods have been developed with the goal of producing the most in vivo-like structures possible. Whilst strongly preferable to  conventional cell culture, these approaches are often poorly reproducible, time-consuming, expensive, and labor-intensive and require specialized equipment. Here, we describe a novel 3D culture platform, which we have termed the naked liquid marble (NLM). Cells are cultured in a liquid drop (the NLM) in superhydrophobic-coated plates, which causes the cells to naturally form 3D structures. Inside the NLMs, cells are free to interact with each other, forming multiple 3D spheroids that are uniform in size and shape in less than 24 h. We showed that this system is highly reproducible, suitable for cell coculture, compound screening, and also compatible with laboratory automation systems. The low cost of production, small volume of each NLM, and production via automated liquid handling make this 3D cell-culturing system particularly suitable for high-throughput screening assays such as drug testing as well as numerous other cell-based research applications.


Assuntos
Técnicas de Cultura de Células/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Esferoides Celulares/patologia
11.
J Comp Neurol ; 527(7): 1228-1244, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30592044

RESUMO

Olfactory ensheathing cells (OECs) are often described as being present in both the peripheral and the central nervous systems (PNS and CNS). Furthermore, the olfactory nervous system glia limitans (the glial layer defining the PNS-CNS border) is considered unique as it consists of intermingling OECs and astrocytes. In contrast, the glia limitans of the rest of the nervous system consists solely of astrocytes which create a distinct barrier to Schwann cells (peripheral glia). The ability of OECs to interact with astrocytes is one reason why OECs are believed to be superior to Schwann cells for transplantation therapies to treat CNS injuries. We have used transgenic reporter mice in which glial cells express DsRed fluorescent protein to study the cellular constituents of the glia limitans. We found that the glia limitans layer of the olfactory nervous system is morphologically similar to elsewhere in the nervous system, with a similar low degree of intermingling between peripheral glia and astrocytes. We found that the astrocytic layer of the olfactory bulb is a distinct barrier to bacterial infection, suggesting that this layer constitutes the PNS-CNS immunological barrier. We also found that OECs interact with astrocytes in a similar fashion as Schwann cells in vitro. When cultured in three dimensions, however, there were subtle differences between OECs and Schwann cells in their interactions with astrocytes. We therefore suggest that glial fibrillary acidic protein-reactive astrocyte layer of the olfactory bulb constitutes the glia limitans of the olfactory nervous system and that OECs are primarily "PNS glia."


Assuntos
Neuroglia/citologia , Bulbo Olfatório/citologia , Sistema Nervoso Periférico/citologia , Animais , Astrócitos/citologia , Burkholderia pseudomallei/isolamento & purificação , Técnicas de Cultura de Células , Células Cultivadas , Genes Reporter , Melioidose/microbiologia , Melioidose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Cavidade Nasal/inervação , Bulbo Olfatório/microbiologia , Células de Schwann/citologia , Células Receptoras Sensoriais/citologia , Nervo Trigêmeo/citologia
12.
BMC Cancer ; 18(1): 41, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-29304770

RESUMO

BACKGROUND: Cancer cell resistance to therapeutics can result from acquired or de novo-mediated factors. Here, we have utilised advanced breast cancer cell culture models to elucidate de novo doxorubicin resistance mechanisms. METHODS: The response of breast cancer cell lines (MCF-7 and MDA-MB-231) to doxorubicin was examined in an in vitro three-dimensional (3D) cell culture model. Cells were cultured with Matrigel™ enabling cellular arrangements into a 3D architecture in conjunction with cell-to-extracellular matrix (ECM) contact. RESULTS: Breast cancer cells cultured in a 3D ECM-based model demonstrated altered sensitivity to doxorubicin, when compared to those grown in corresponding two-dimensional (2D) monolayer culture conditions. Investigations into the factors triggering the observed doxorubicin resistance revealed that cell-to-ECM interactions played a pivotal role. This finding correlated with the up-regulation of pro-survival proteins in 3D ECM-containing cell culture conditions following exposure to doxorubicin. Inhibition of integrin signalling in combination with doxorubicin significantly reduced breast cancer cell viability. Furthermore, breast cancer cells grown in a 3D ECM-based model demonstrated a significantly reduced proliferation rate in comparison to cells cultured in 2D conditions. CONCLUSION: Collectively, these novel findings reveal resistance mechanisms which may contribute to reduced doxorubicin sensitivity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Proteínas da Matriz Extracelular/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Laminina/química , Células MCF-7 , Proteoglicanas/química , Transdução de Sinais/efeitos dos fármacos
13.
Molecules ; 22(10)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023425

RESUMO

Kinetoplastid parasites cause vector-borne parasitic diseases including leishmaniasis, human African trypanosomiasis (HAT) and Chagas disease. These Neglected Tropical Diseases (NTDs) impact on some of the world's lowest socioeconomic communities. Current treatments for these diseases cause severe toxicity and have limited efficacy, highlighting the need to identify new treatments. In this study, the Davis open access natural product-based library was screened against kinetoplastids (Leishmania donovani DD8, Trypanosoma brucei brucei and Trypanosoma cruzi) using phenotypic assays. The aim of this study was to identify hit compounds, with a focus on improved efficacy, selectivity and potential to target several kinetoplastid parasites. The IC50 values of the natural products were obtained for L. donovani DD8, T. b. brucei and T. cruzi in addition to cytotoxicity against the mammalian cell lines, HEK-293, 3T3 and THP-1 cell lines were determined to ascertain parasite selectivity. Thirty-one compounds were identified with IC50 values of ≤ 10 µM against the kinetoplastid parasites tested. Lissoclinotoxin E (1) was the only compound identified with activity across all three investigated parasites, exhibiting IC50 values < 5 µM. In this study, natural products with the potential to be new chemical starting points for drug discovery efforts for kinetoplastid diseases were identified.


Assuntos
Antiprotozoários/farmacologia , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Kinetoplastida/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Animais , Produtos Biológicos/química , Linhagem Celular , Descoberta de Drogas , Humanos , Concentração Inibidora 50 , Camundongos , Testes de Sensibilidade Parasitária , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico
14.
Artigo em Inglês | MEDLINE | ID: mdl-28674055

RESUMO

Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research.


Assuntos
Antimaláricos/farmacologia , Malária/tratamento farmacológico , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Descoberta de Drogas/métodos , Células HEK293 , Humanos , Leishmaniose/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Tripanossomíase Africana/tratamento farmacológico
15.
Drug Discov Today ; 22(10): 1516-1531, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28647378

RESUMO

Leishmaniasis, caused by the trypanosomatid protozoan Leishmania, is endemic in 98 countries worldwide, with morbidity and mortality increasing daily. Despite available drugs, leishmaniasis faces the challenge of emerging resistance and toxicity concerns for current drug regimes. Identification of anti-leishmanial compounds representing new chemistry and novel mechanisms of action is essential to populate the drug discovery pipeline. The in vitro assays currently available have shown poor translational outcomes, with high compound attrition rates. It is therefore imperative that more physiologically relevant assays are developed to identify anti-leishmanial compounds. This review provides an overview of the disease, current treatment options and compares the various technologies and assay formats currently available for leishmanial drug discovery.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose/tratamento farmacológico , Animais , Descoberta de Drogas/métodos , Humanos , Leishmania/efeitos dos fármacos
16.
Assay Drug Dev Technol ; 14(7): 367-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27552143

RESUMO

Pancreatic cancer continues to have one of the poorest prognoses among all cancers. The drug discovery efforts for this disease have largely failed, with no significant improvement in survival outcomes for advanced pancreatic cancer patients over the past 20 years. Traditional in vitro cell culture techniques have been used extensively in both basic and early drug discovery; however, these systems offer poor models to assess emerging therapeutics. More predictive cell-based models, which better capture the cellular heterogeneity and complexities of solid pancreatic tumors, are urgently needed not only to improve drug discovery success but also to provide insight into the tumor biology. Pancreatic tumors are characterized by a unique micro-environment that is surrounded by a dense stroma. A complex network of interactions between extracellular matrix (ECM) components and the effects of cell-to-cell contacts may enhance survival pathways within in vivo tumors. This biological and physical complexity is lost in traditional cell monolayer models. To explore the predictive potential of a more complex cellular system, a three-dimensional (3D) micro-tumor assay was evaluated. Efficacy of six current chemotherapeutics was determined against a panel of primary and metastatic pancreatic tumor cell lines in a miniaturized ECM-based 3D cell culture system. Suitability for potential use in high-throughput screening applications was assessed, including ascertaining the effects that miniaturization and automation had on assay robustness. Cellular health was determined by utilizing an indirect population-based metabolic activity assay and a direct imaging-based cell viability assay.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células/métodos , Miniaturização/métodos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Antineoplásicos/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Resultado do Tratamento
17.
Expert Opin Drug Discov ; 11(9): 885-94, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27454169

RESUMO

INTRODUCTION: Cell culture models have been at the heart of anti-cancer drug discovery programs for over half a century. Advancements in cell culture techniques have seen the rapid evolution of more complex in vitro cell culture models investigated for use in drug discovery. Three-dimensional (3D) cell culture research has become a strong focal point, as this technique permits the recapitulation of the tumor microenvironment. Biologically relevant 3D cellular models have demonstrated significant promise in advancing cancer drug discovery, and will continue to play an increasing role in the future. AREAS COVERED: In this review, recent advances in 3D cell culture techniques and their application in tumor modeling and anti-cancer drug discovery programs are discussed. The topics include selection of cancer cells, 3D cell culture assays (associated endpoint measurements and analysis), 3D microfluidic systems and 3D bio-printing. EXPERT OPINION: Although advanced cancer cell culture models and techniques are becoming commonplace in many research groups, the use of these approaches has yet to be fully embraced in anti-cancer drug applications. Furthermore, limitations associated with analyzing information-rich biological data remain unaddressed.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Animais , Bioimpressão , Técnicas de Cultura de Células , Desenho de Fármacos , Humanos , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Neoplasias/patologia , Impressão Tridimensional
19.
J Cancer Res Clin Oncol ; 141(5): 951-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25773123

RESUMO

PURPOSE: Utilization of miniaturized three-dimensional (3D) cell culture-based assays enables investigation into the anticancer activity of drug candidates and further elucidation of the anticancer profile of standard-of-care chemotherapeutic agents against tumor cells. Drug discovery assays established using 3D cell culture, which better recapitulate the tumor microenvironment, may more accurately reflect the antitumor activity of compounds. METHODS: Several standard-of-care anticancer drugs, epirubicin, paclitaxel and vinorelbine, were evaluated against a panel of breast cancer cell lines grown in a 3D cell culture microenvironment in the presence of extracellular matrix. A comparison of this antitumor activity in 3D conditions was made with that observed in traditional two-dimensional (2D) monolayer conditions. RESULTS: Examination of the above mentioned drugs against breast tumor cells cultured in 3D conditions demonstrated significantly altered potency and efficacy in comparison with cells propagated in a 2D monolayer system. The differences observed were cell line-dependent and drug-specific; the triple-negative cell line MDA-MB-231 and the endocrine receptor-positive cell line MCF-7 consistently displayed resistance to therapeutics with distinct modes of action (i.e., topoisomerase II and microtubules) in 3D cell culture in comparison with ErbB2 receptor-positive BT-474 cells. CONCLUSION: The data presented herein demonstrates the cellular viability and physical changes observed within the 3D spheroid following exposure to drug, which is not always reflected in 2D cell culture models.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Área Sob a Curva , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células , Epirubicina/administração & dosagem , Feminino , Humanos , Paclitaxel/administração & dosagem , Resultado do Tratamento , Vimblastina/administração & dosagem , Vimblastina/análogos & derivados , Vinorelbina
20.
J Nat Prod ; 77(12): 2633-40, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25405587

RESUMO

The supply of (-)-hopeaphenol (1) was achieved via enzymatic biotransformation in order to provide material for preclinical investigation. High-throughput screening of a prefractionated natural product library aimed to identify compounds that inhibit the bacterial virulence type III secretion system (T3SS) identified several fractions derived from two Papua New Guinean Anisoptera species, showing activity against Yersinia pseudotuberculosis outer proteins E and H (YopE and YopH). Bioassay-directed isolation from the leaves of A. thurifera, and similarly A. polyandra, resulted in three known resveratrol tetramers, (-)-hopeaphenol (1), vatalbinoside A (2), and vaticanol B (3). Compounds 1-3 displayed IC50 values of 8.8, 12.5, and 9.9 µM in a luminescent reporter-gene assay (YopE) and IC50 values of 2.9, 4.5, and 3.3 µM in an enzyme-based YopH assay, respectively, which suggested that they could potentially act against the T3SS in Yersinia. The structures of 1-3 were confirmed through a combination of spectrometric, chemical methods, and single-crystal X-ray structure determinations of the natural product 1 and the permethyl ether analogue of 3. The enzymatic hydrolysis of the ß-glycoside 2 to the aglycone 1 was achieved through biotransformation using the endogenous leaf enzymes. This significantly enhanced the yield of the target bioactive natural product from 0.08% to 1.3% and facilitates ADMET studies of (-)-hopeaphenol (1).


Assuntos
Estilbenos/química , Estilbenos/isolamento & purificação , Estilbenos/farmacologia , Animais , Antibacterianos/química , Benzofuranos/química , Benzofuranos/isolamento & purificação , Dipterocarpaceae , Compostos Heterocíclicos de 4 ou mais Anéis , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Odonatos , Papua Nova Guiné , Fenóis/química , Fenóis/isolamento & purificação , Floresta Úmida , Resveratrol , Yersinia pseudotuberculosis/química , Yersinia pseudotuberculosis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...