Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 132(1): 24-35, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762525

RESUMO

Changes in the gravitational vector by postural changes or weightlessness induce fluid shifts, impacting ocular hemodynamics and regional pressures. This investigation explores the impact of changes in the direction of the gravitational vector on intraocular pressure (IOP), mean arterial pressure at eye level (MAPeye), and ocular perfusion pressure (OPP), which is critical for ocular health. Thirteen subjects underwent 360° of tilt (including both prone and supine positions) at 15° increments. At each angle, steady-state IOP and MAPeye were measured, and OPP calculated as MAPeye - IOP. Experimental data were also compared to a six-compartment lumped-parameter model of the eye. Mean IOP, MAPeye, and OPP significantly increased from 0° supine to 90° head-down tilt (HDT) by 20.7 ± 1.7 mmHg (P < 0.001), 38.5 ± 4.1 mmHg (P < 0.001), and 17.4 ± 3.2 mmHg (P < 0.001), respectively. Head-up tilt (HUT) significantly decreased OPP by 16.5 ± 2.5 mmHg (P < 0.001). IOP was significantly higher in prone versus supine position for much of the tilt range. Our study indicates that OPP is highly gravitationally dependent. Specifically, data show that MAPeye is more gravitationally dependent than IOP, thus causing OPP to increase during HDT and to decrease during HUT. In addition, IOP was elevated in prone position compared with supine position due to the additional hydrostatic column between the base of the rostral globe to the mid-coronal plane, supporting the notion that hydrostatic forces play an important role in ocular hemodynamics. Changes in OPP as a function of changes in gravitational stress and/or weightlessness may play a role in the pathogenesis of spaceflight-associated neuro-ocular syndrome.NEW & NOTEWORTHY Maintaining appropriate ocular perfusion pressure (OPP) is critical for ocular health. We measured the relative changes in intraocular and mean arterial pressures during 360° tilt and calculated OPP, which was elevated during head-down tilt and decreased during head-up tilt. Experimental data are also explained by our computational model. We demonstrate that OPP is more gravitationally dependent than previously recognized and may be a factor in the overall patho-etiology behind the weightlessness-induced spaceflight-associated neuro-ocular syndrome.


Assuntos
Pressão Intraocular , Ausência de Peso , Pressão Sanguínea , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Perfusão , Tonometria Ocular , Ausência de Peso/efeitos adversos
2.
J Anim Sci ; 98(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32144425

RESUMO

The ability to positively alter immune and stress response with nutritional compounds is of great interest and importance to the beef industry. There is a proprietary product (OmniGen-AF [OG]; Phibro Animal Health, Quincy, IL) reported to have performance-enhancing benefits by altering animal response to stress and immune challenges. The objective of this 2-yr research project was to study the effect of supplementing OG to beef cows and their calves on breeding and growth performance. One hundred and twelve multiparous beef cows and 48 primiparous cows were randomly assigned to treatment in year 1; control (CON, no OG; n = 56 multiparous and 24 primiparous) or treatment (OG fed at 8.8 g/100 kg body weight [BW]; n = 56 multiparous and 24 primiparous). Multiparous cows (mean ± SD = 6.4 ± 0.4 yr; BW = 589 ± 9.2 kg; body condition score [BCS] 6.2 ± 0.07) were used in both years of the experiment and primiparous cows (mean ± SD = 2.1 ± 0.04 yr of age, weighed 400 ± 7.5 kg, and BSC of 5.6 ± 0.06) were only used in the first year of the experiment. CON and OG supplements were offered over two production cycles beginning in December approximately 60 d prior to projected calving through pre-breeding in May of each year. Calves from treatment cows were offered treatments in a creep supplement limited to a daily rate of 1% as-fed of BW prorated for 3-d/wk feeding from mid-July through weaning with OG offered at 8.8 g/100 kg BW. Primiparous cow's BW, BCS, and calf performance were not affected by treatment (P ≥ 0.15) in year 1. BW of multiparous OG cows tended (P = 0.10) to be heavier at weaning in year 1 and was greater (P = 0.05) at the onset of the experiment in year 2. Body condition of OG cows was greater (P ≤ 0.02) at weaning in both years 1 and 2, as well as at the onset of the experiment in year 2. Calves fed OG from the mature cows gained more (P = 0.05) BW during the creep feeding period than CON. Core body temperatures of OG heifers measured during the late summer with intravaginal temperature data loggers tended (P ≤ 0.10) to be less at 1400 and 1700 hours and were less (P = 0.05) at 1800 hours than CON heifers. Feeding OG did not result in changes (P = 0.25) in serum titer response to the BVD virus of calves during year 2. The results of the current experiment indicate feeding OG to beef cows and calves can result in improvement in BCS of cows, enhance weight gain of calves preweaning, and reduce heat loads in heifer calves during the late summer.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais/análise , Imunidade/efeitos dos fármacos , Fatores Imunológicos/análise , Ração Animal/análise , Animais , Temperatura Corporal , Cruzamento , Bovinos/crescimento & desenvolvimento , Bovinos/imunologia , Dieta/veterinária , Feminino , Masculino , Paridade , Estações do Ano , Estresse Fisiológico/efeitos dos fármacos , Desmame , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...