Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(9): 5049-5058, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32051250

RESUMO

The coordinated redistribution of sugars from mature "source" leaves to developing "sink" leaves requires tight regulation of sugar transport between cells via plasmodesmata (PD). Although fundamental to plant physiology, the mechanisms that control PD transport and thereby support development of new leaves have remained elusive. From a forward genetic screen for altered PD transport, we discovered that the conserved eukaryotic glucose-TOR (TARGET OF RAPAMYCIN) metabolic signaling network restricts PD transport in leaves. Genetic approaches and chemical or physiological treatments to either promote or disrupt TOR activity demonstrate that glucose-activated TOR decreases PD transport in leaves. We further found that TOR is significantly more active in mature leaves photosynthesizing excess sugars than in young, growing leaves, and that this increase in TOR activity correlates with decreased rates of PD transport. We conclude that leaf cells regulate PD trafficking in response to changing carbohydrate availability monitored by the TOR pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Metabolismo dos Carboidratos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Inativação Gênica , Folhas de Planta/crescimento & desenvolvimento , Transporte Proteico , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo
2.
Plant Signal Behav ; 10(7): e1034422, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042822

RESUMO

The SAND domain protein ULTRAPETALA1 (ULT1) functions as a trithorax group factor that regulates a variety of developmental processes in Arabidopsis. We have recently shown that ULT1 regulates developmental patterning in the gynoecia and leaves. ULT1 acts together with the KANADI1 (KAN1) transcription factor to pattern the apical-basal axis during gynoecium formation, whereas the 2 genes act antagonistically to pattern the adaxial-abaxial axis during both gynoecium and leaf formation. In particular, our data showed that ULT1 is necessary for the kan1 adaxialized organ phenotype. Here, we observe the internal structure of ult1, kan1 and ult1 kan1 rosette leaves to better understand the suppression of the kan1 adaxialized leaf polarity defect by ult1 mutations. Our results indicate that ULT1 and KAN1 act antagonistically to pattern the adaxial-abaxial axis in leaves by establishing the asymmetry of the internal cell layers.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/embriologia , Padronização Corporal , Polaridade Celular , Folhas de Planta/citologia , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo
3.
Plant Cell ; 26(11): 4345-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25381352

RESUMO

Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin-remodeling factors contribute to plant organogenesis. We demonstrate that the trithorax group (trxG) gene ULTRAPETALA1 (ULT1) and the GARP transcription factor gene KANADI1 (KAN1) organize the Arabidopsis thaliana gynoecium along two distinct polarity axes. We show that ULT1 activity is required for the kan1 adaxialized polarity defect, indicating that ULT1 and KAN1 act oppositely to regulate the adaxial-abaxial axis. Conversely, ULT1 and KAN1 together establish apical-basal polarity by promoting basal cell fate in the gynoecium, restricting the expression domain of the basic helix-loop-helix transcription factor gene SPATULA. Finally, we show that ult alleles display dose-dependent genetic interactions with kan alleles and that ULT and KAN proteins can associate physically. Our findings identify a dual role for plant trxG factors in organ patterning, with ULT1 and KAN1 acting antagonistically to pattern the adaxial-abaxial polarity axis but jointly to pattern the apical-basal axis. Our data indicate that the ULT proteins function to link chromatin-remodeling factors with DNA binding transcription factors to regulate target gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flores/citologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Hibridização In Situ , Modelos Biológicos , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Ligação Proteica , Análise de Sequência de DNA , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
4.
Open Virol J ; 5: 1-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21660184

RESUMO

Cell-to-cell movement of Potato mop-top virus (PMTV) is mediated by three virus-encoded 'triple gene block' (TGB) proteins termed TGBp1, TGBp2 and TGBp3. TGBp1 binds virus RNAs to form viral ribonucleoprotein complexes (vRNPs), the transport form of viral genome. TGBp2 and TGBp3 are necessary for intracellular delivery of TGBp1-containing vRNPs to plasmodesmata. To analyze subcellular localization and transport of TGBp1 we used a single binary vector for agrobacterium-mediated co-expression of PMTV TGBp1 fused to green fluorescent protein and TGBp2/TGBp3. At two days post infiltration (dpi) TGBp1 was found in the nucleus and in association with microtubules (MTs). Similar localization pattern was revealed in cells expressing GFP-TGBp1 alone after particle bombardment. At 3 dpi, in addition to the nucleus and MTs, TGBp1 was detected in numerous granular bodies located both along the MTs and at the cell wall. The latter structures co-localized with plasmodesmata-associated callose depositions. At 4 dpi, GFP-TGBp1 was detected in cell wall-associated bodies and also in residual MTs, the nucleoplasm and large perinuclear inclusions resembling aggresomes. Therefore GFP-TGBp1 association with MTs preceded to its localization to plasmodesmata. Disassembly of cell MTs by colchicine prevented GFP-TGBp1 targeting to plasmodesmata and the MT-dependent aggresome formation. Deletion analysis also revealed a correlation between TGBp1 microtubule association and plasmodesmata targeting. We propose that TGBp1 interaction with MTs may be important for the formation of vRNP bodies destined for the transport to plasmodesmata as well as degradation of the excessive TGBp1.

5.
Biochimie ; 93(4): 742-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21251950

RESUMO

Cell-to-cell movement of Poa semilatent virus (genus Hordeivirus) in infected plants is mediated by three viral 'triple gene block' (TGB) proteins. One of those termed TGBp3 is an integral membrane protein essential for intracellular transport of other TGB proteins and viral genomic RNA to plasmodesmata. TGBp3 targeting to plasmodesmata-associated sites is believed to involve an unconventional mechanism which does not employ endoplasmic reticulum-derived transport vesicles. Previously TGBp3 has been shown to contain a composite transport signal consisting of the central hydrophilic protein region which includes a conserved pentapeptide YQDLN and the C-terminal transmembrane segment. This study demonstrates that these TGBp3 structural elements have distinct functions in protein transport. The YQDLN-containing region is essential for TGBp3 incorporation into high-molecular-mass protein complexes. In transient expression assay formation of such complexes is necessary for entering the TGBp3-specific pathway of intracellular transport and protein delivery to plasmodesmata-associated sites. In virus-infected plants TGBp3 is also found predominantly in the form of high-molecular-mass complexes. When the complex-formation function of YQDLN-containing region is disabled by a mutation, targeting to plasmodesmata-associated sites can be complemented by a heterologous peptide capable of formation multimeric complexes. The C-terminal transmembrane segment is found to be an essential signal of TGBp3 intracellular transport to peripheral sites.


Assuntos
Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/fisiologia , Vírus de RNA/fisiologia , Solanaceae/virologia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Transporte Proteico , Vírus de RNA/genética , Vírus de RNA/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...