Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotoxicol Teratol ; 90: 107059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34979254

RESUMO

Exposure to relatively high levels of inorganic arsenic (iAs) is associated with detrimental effects on human health, including cancer and diabetes. The effects of lower-level exposures are less clear, and gaps in the literature exist as to the effects of iAs exposure on neurodevelopment. The current study assessed the effects of perinatal iAs exposure on rodent neurodevelopment and behavior. Pregnant Sprague-Dawley (SD) rats were exposed to arsenite (AsIII) via oral gavage on gestational days (GD) 6 through 21, and pups were directly dosed via gavage on postnatal days (PND) 1 through 21. Dams and offspring received the same doses: 0.00, 0.10, 1.50, or 3.75 mg/kg/day. Male and female offspring underwent a battery of behavioral assessments from weaning until PND 180. Brain arsenic levels increased in a dose-dependent manner at both PND 1 and 21. Results from the behavioral tests show that pre- and postnatal AsIII exposure did not adversely affect offspring weight gain, adolescent motor and cognitive functions, or adult motor and cognitive functions in the SD rat. There were no differences in concentration of several brain proteins associated with blood-brain barrier permeability, dopamine functions, and inflammation.


Assuntos
Arsênio , Arsenitos , Efeitos Tardios da Exposição Pré-Natal , Animais , Arsenitos/metabolismo , Arsenitos/toxicidade , Comportamento Animal , Encéfalo , Feminino , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley
2.
J Vis Exp ; (139)2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30272660

RESUMO

Understanding blood-brain barrier function under physiological and pathophysiological conditions is critical for the development of new therapeutic strategies that hold the promise to enhance brain drug delivery, improve brain protection, and treat brain disorders. However, studying the human blood-brain barrier function is challenging. Thus, there is a critical need for appropriate models. In this regard, brain capillaries isolated from human brain tissue represent a unique tool to study barrier function as close to the human in vivo situation as possible. Here, we describe an optimized protocol to isolate capillaries from human brain tissue at a high yield and with consistent quality and purity. Capillaries are isolated from fresh human brain tissue using mechanical homogenization, density-gradient centrifugation, and filtration. After the isolation, the human brain capillaries can be used for various applications including leakage assays, live cell imaging, and immune-based assays to study protein expression and function, enzyme activity, or intracellular signaling. Isolated human brain capillaries are a unique model to elucidate the regulation of the human blood-brain barrier function. This model can provide insights into central nervous system (CNS) pathogenesis, which will help the development of therapeutic strategies for treating CNS disorders.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/anatomia & histologia , Encéfalo/anatomia & histologia , Capilares/anatomia & histologia , Humanos
3.
Front Aging Neurosci ; 10: 186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997495

RESUMO

One characteristic of Alzheimer's disease (AD) is excessive accumulation of amyloid-ß (Aß) in the brain. Aß brain accumulation is, in part, due to a reduction in Aß clearance from the brain across the blood-brain barrier. One key element that contributes to Aß brain clearance is P-glycoprotein (P-gp) that transports Aß from brain to blood. In AD, P-gp protein expression and transport activity levels are significantly reduced, which impairs Aß brain clearance. The mechanism responsible for reduced P-gp expression and activity levels is poorly understood. We recently demonstrated that Aß40 triggers P-gp degradation through the ubiquitin-proteasome pathway. Consistent with these data, we show here that ubiquitinated P-gp levels in brain capillaries isolated from brain samples of AD patients are increased compared to capillaries isolated from brain tissue of cognitive normal individuals. We extended this line of research to in vivo studies using transgenic human amyloid precursor protein (hAPP)-overexpressing mice (Tg2576) that were treated with PYR41, a cell-permeable, irreversible inhibitor of the ubiquitin-activating enzyme E1. Our data show that inhibiting P-gp ubiquitination protects the transporter from degradation, and immunoprecipitation experiments confirmed that PYR41 prevented P-gp ubiquitination. We further found that PYR41 treatment prevented reduction of P-gp protein expression and transport activity levels and substantially lowered Aß brain levels in hAPP mice. Together, our findings provide in vivo proof that the ubiquitin-proteasome system mediates reduction of blood-brain barrier P-gp in AD and that inhibiting P-gp ubiquitination prevents P-gp degradation and lowers Aß brain levels. Thus, targeting the ubiquitin-proteasome system may provide a novel therapeutic approach to protect blood-brain barrier P-gp from degradation in AD and other Aß-based pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...