Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 126(12): 125001, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540492

RESUMO

BACKGROUND: The Life Cycle Initiative, hosted at the United Nations Environment Programme, selected human toxicity impacts from exposure to chemical substances as an impact category that requires global guidance to overcome current assessment challenges. The initiative leadership established the Human Toxicity Task Force to develop guidance on assessing human exposure and toxicity impacts. Based on input gathered at three workshops addressing the main current scientific challenges and questions, the task force built a roadmap for advancing human toxicity characterization, primarily for use in life cycle impact assessment (LCIA). OBJECTIVES: The present paper aims at reporting on the outcomes of the task force workshops along with interpretation of how these outcomes will impact the practice and reliability of toxicity characterization. The task force thereby focuses on two major issues that emerged from the workshops, namely considering near-field exposures and improving dose­response modeling. DISCUSSION: The task force recommended approaches to improve the assessment of human exposure, including capturing missing exposure settings and human receptor pathways by coupling additional fate and exposure processes in consumer and occupational environments (near field) with existing processes in outdoor environments (far field). To quantify overall aggregate exposure, the task force suggested that environments be coupled using a consistent set of quantified chemical mass fractions transferred among environmental compartments. With respect to dose­response, the task force was concerned about the way LCIA currently characterizes human toxicity effects, and discussed several potential solutions. A specific concern is the use of a (linear) dose­response extrapolation to zero. Another concern addresses the challenge of identifying a metric for human toxicity impacts that is aligned with the spatiotemporal resolution of present LCIA methodology, yet is adequate to indicate health impact potential. CONCLUSIONS: Further research efforts are required based on our proposed set of recommendations for improving the characterization of human exposure and toxicity impacts in LCIA and other comparative assessment frameworks. https://doi.org/10.1289/EHP3871.


Assuntos
Exposição Ambiental , Medição de Risco/métodos , Qualidade de Produtos para o Consumidor , Ecotoxicologia , Humanos , Modelos Teóricos , Exposição Ocupacional
2.
Environ Int ; 112: 41-48, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247842

RESUMO

Firefighters are exposed to chemicals during fire events and we previously demonstrated that fire station dust has high levels of polybrominated diphenyl ethers (PBDEs). In conducting the Fire Station Dust Study, we sought to further characterize the chemicals to which firefighters could be exposed - measuring the emerging class of phosphorous-containing flame retardants (PFRs) in fire stations, for the first time, as well as PBDEs. Dust samples from 26 fire stations in five states were collected from vacuum-cleaner bags and analyzed for PFRs and PBDEs. PFR concentrations were found to be on the same order of magnitude as PBDE concentrations (maximum PFR: 218,000ng/g; maximum PBDE: 351,000ng/g). Median concentrations of tri-n-butyl phosphate (TNBP), tris (2-chloroisopropyl) phosphate (TCIPP), and tris(1,3-dichloroisopropyl)phosphate (TDCIPP) in dust from fire stations were higher than those previously reported in homes and other occupational settings around the world. Total PFR levels did not vary significantly among states. Levels of TDCIPP were higher in stations where vacuum cleaners were used to clean surfaces other than the floor. PBDE levels were comparable to those found in our previous study of 20 California fire stations and much higher than levels in California residences. PFR and PBDE levels in fire station dust are higher than in other occupational and residential settings, underscoring the need to identify and control sources of this contamination.


Assuntos
Poeira/análise , Poluentes Ambientais/análise , Retardadores de Chama/análise , Organofosfatos/análise , Bombeiros , Humanos
3.
Environ Sci Technol ; 49(8): 4988-94, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25798547

RESUMO

Firefighters are exposed to chemicals during fire events and may also experience chemical exposure in their fire stations. Dust samples from used vacuum cleaner bags were collected from 20 fire stations in California and analyzed for polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) using gas chromatography-mass spectrometry. Median dust concentrations were higher for PBDEs (e.g., 47 000 ng/g for BDE-209) than for PAHs (e.g., 220 ng/g for benzo[a]pyrene) or PCBs (e.g., 9.3 ng/g for PCB-180). BDE-209 concentrations in dust from California fire stations were among the highest of any previously documented homes or occupational settings in the world. We examined factors such as the frequency of emergency responses, the number of fire vehicles on site, and building age, but we could not account for the high levels of BDE-209 observed in fire station dust. Based on the findings of our pilot study, we hypothesize that possible sources of BDE-209 in fire stations include contaminated ash tracked back from fire events via boots, clothing, and other equipment as well as specialized equipment treated with BDE-209, including turnout gear and fire vehicles. We suggest possible follow-up studies to confirm these hypotheses.


Assuntos
Poeira/análise , Bombeiros , Éteres Difenil Halogenados/análise , California , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Projetos Piloto , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...