Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Schizophrenia (Heidelb) ; 9(1): 2, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604437

RESUMO

Schizophrenia is a chronic brain disorder, and neuroimaging abnormalities have been reported in different stages of the illness for decades. However, when and how these brain abnormalities occur and evolve remains undetermined. We hypothesized structural and functional brain abnormalities progress throughout the illness course at different rates in schizophrenia. A total of 115 patients with schizophrenia were recruited and stratified into three groups of different illness periods: 5-year group (illness duration: ≤5 years), 15-year group (illness duration: 12-18 years), and 25-year group (illness duration: ≥25 years); 230 healthy controls were matched by age and sex to the three groups, respectively. All participants underwent resting-state MRI scanning. Each group of patients with schizophrenia was compared with the corresponding controls in terms of voxel-based morphometry (VBM), fractional anisotropy (FA), global functional connectivity density (gFCD), and sample entropy (SampEn) abnormalities. In the 5-year group we observed only SampEn abnormalities in the putamen. In the 15-year group, we observed VBM abnormalities in the insula and cingulate gyrus and gFCD abnormalities in the temporal cortex. In the 25-year group, we observed FA abnormalities in nearly all white matter tracts, and additional VBM and gFCD abnormalities in the frontal cortex and cerebellum. By using two structural and two functional MRI analysis methods, we demonstrated that individual functional abnormalities occur in limited brain areas initially, functional connectivity and gray matter density abnormalities ensue later in wider brain areas, and structural connectivity abnormalities involving almost all white matter tracts emerge in the third decade of the course in schizophrenia.

2.
Front Psychiatry ; 11: 868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192632

RESUMO

BACKGROUND: Sensory gating describes neurological processes of filtering out redundant or unnecessary stimuli during information processing, and sensory gating deficits may contribute to the symptoms of schizophrenia. Among the three components of auditory event-related potentials reflecting sensory gating, P50 implies pre-attentional filtering of sensory information and N100/P200 reflects attention triggering and allocation processes. Although diminished P50 gating has been extensively documented in patients with schizophrenia, previous studies on N100 were inconclusive, and P200 has been rarely examined. This study aimed to investigate whether patients with schizophrenia have P50, N100, and P200 gating deficits compared with control subjects. METHODS: Control subjects and clinically stable schizophrenia patients were recruited. The mid-latency auditory evoked responses, comprising P50, N100, and P200, were measured using the auditory-paired click paradigm without manipulation of attention. Sensory gating parameters included S1 amplitude, S2 amplitude, amplitude difference (S1-S2), and gating ratio (S2/S1). We also evaluated schizophrenia patients with PANSS to be correlated with sensory gating indices. RESULTS: One hundred four patients and 102 control subjects were examined. Compared to the control group, schizophrenia patients had significant sensory gating deficits in P50, N100, and P200, reflected by larger gating ratios and smaller amplitude differences. Further analysis revealed that the S2 amplitude of P50 was larger, while the S1 amplitude of N100/P200 was smaller, in schizophrenia patients than in the controls. We found no correlations between sensory gating indices and schizophrenia positive or negative symptom clusters. However, we found a negative correlation between the P200 S2 amplitude and Bell's emotional discomfort factor/Wallwork's depressed factor. CONCLUSION: Till date, this study has the largest sample size to analyze P50, N100, and P200 collectively by adopting the passive auditory paired-click paradigm without distractors. With covariates controlled for possible confounds, such as age, education, smoking amount and retained pairs, we found that schizophrenia patients had significant sensory gating deficits in P50-N100-P200. The schizophrenia patients had demonstrated a unique pattern of sensory gating deficits, including repetition suppression deficits in P50 and stimulus registration deficits in N100/200. These results suggest that sensory gating is a pervasive cognitive abnormality in schizophrenia patients that is not limited to the pre-attentive phase of information processing. Since P200 exhibited a large effect size and did not require additional time during recruitment, future studies of P50-N100-P200 collectively are highly recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...