Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38901107

RESUMO

Bombyx mori is an oligophagous economic insect. Cis-Jasmone is one of the main substances in mulberry leaf that attract silkworm for feeding and BmOR56 is its receptor. Potential interaction ways between BmOR56 and cis-Jasmone were explored, which included some crucial amino acids such as Gln172, Val173, Ser176, Lys182, His322, and Arg345. BmOR56 was edited using CRISPR/cas9 for Qiufeng, and a homozygous knockout strain QiufengM was obtained. Compared with Qiufeng, the feeding ability of QiufengM on mulberry leaf did not change significantly, but on artificial diet decreased significantly. QiufengM also showed a dependence on the concentration of mulberry leaf powder. The result indicated that other olfactory genes had a compensatory effect on the attractance of mulberry leaf after the loss of BmOR56. Transcriptome analysis of antennae showed that many genes differentially expressed between Qiufeng and QiufengM, which involved in olfactory system, glucose metabolism, protein metabolism, amino acid metabolism, and insect hormone biosynthesis. Particularly, BmIR21, BmOR53 and BmOR27 were significantly up-regulated, which may have a compensatory effect on BmOR56 loss. In addition, detoxification mechanism was activated and may cause the passivation of feeling external signals in silkworm.

2.
Insect Sci ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772748

RESUMO

C-type lectins (CTLs) act as pattern recognition receptors (PRRs) to initiate the innate immune response in insects. A CTL with dual carbohydrate recognition domains (CRDs) (named immulectin-4 [IML-4]) was selected from the Ostrinia furnacalis transcriptome dataset for functional studies. We cloned the full-length complementary DNA of O. furnacalis IML-4 (OfIML-4). It encodes a 328-residue protein with a Glu-Pro-Asn (EPN) and Gln-Pro-Asp (QPD) motifs in 2 CRDs, respectively. OfIML-4 messenger RNA levels increased significantly upon the bacterial and fungal infection. Recombinant OfIML-4 (rIML-4) and its individual CRDs (rCRD1 and rCRD2) exhibited the binding ability to various microorganisms including Escherichia coli, Micrococcus luteus, Pichia pastoris, and Beauveria bassiana, and the cell wall components including lipopolysaccharide from E. coli, peptidoglycan from M. luteus or Bacillus subtilis, and curdlan from Alcaligenes faecalis. The binding further induced the agglutination of E. coli, M. luteus, and B. bassiana in the presence of calcium, the phagocytosis of Staphylococcus aureus by the hemocytes, in vitro encapsulation and melanization of nickel-nitrilotriacetic acid beads, and a significant increase in phenoloxidase activity of plasma. In addition, rIML-4 significantly enhanced the phagocytosis, nodulation, and resistance of O. furnacalis to B. bassiana. Taken together, our results suggest that OfIML-4 potentially works as a PRR to recognize the invading microorganisms, and functions in the innate immune response in O. furnacalis.

3.
Int J Biol Macromol ; 266(Pt 1): 131197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554913

RESUMO

Bombyx mori triose-phosphate transporter protein (BmTPT) is a member of the solute carrier (SLC) family. Its main function is to transport triose phosphate between intracellular and extracellular. In this study, BmTPT was cloned and characterised from the fat body of the silkworm Bombyx mori, resulting in an open reading frame (ORF) with a full length of 936 bp, which can encode 311 amino acid residues and has eight transmembrane structural domains. BmTPT was distributed throughout the cell and deposited the most in the nucleus, and is expressed in all tissues of Bombyx mori. Bombyx mori nucleopolyhedrovirus (BmNPV) infection significantly up-regulated BmTPT expression in immune tissue fat bodies. In addition, overexpression of BmTPT significantly inhibited BmNPV infection and markedly reduced the expression of enzymes related to the cellular glycolytic pathway; on the contrary, down-regulation of BmTPT expression by RNA interference resulted in robust replication of BmNPV and a significant increase in the expression of enzymes related to the cellular glycolytic pathway. This is the first report that BmTPT has antiviral effect in silkworm, and also could result in a lack of energy and raw materials for BmNPV replication and infection through down-regulation of the cellular glycolytic pathway.


Assuntos
Bombyx , Glicólise , Proteínas de Insetos , Nucleopoliedrovírus , Animais , Bombyx/virologia , Bombyx/metabolismo , Nucleopoliedrovírus/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Corpo Adiposo/metabolismo , Corpo Adiposo/virologia , Regulação da Expressão Gênica
4.
Front Physiol ; 15: 1298869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523808

RESUMO

The genetic male sterile line (GMS) of the silkworm Bombyx mori is a recessive mutant that is naturally mutated from the wild-type 898WB strain. One of the major characteristics of the GMS mutant is its small larvae. Through positional cloning, candidate genes for the GMS mutant were located in a region approximately 800.5 kb long on the 24th linkage group of the silkworm. One of the genes was Bombyx mori CCAAT/enhancer-binding protein zeta (BmC/EBPZ), which is a member of the basic region-leucine zipper transcription factor family. Compared with the wild-type 898WB strain, the GMS mutant features a 9 bp insertion in the 3'end of open reading frame sequence of BmC/EBPZ gene. Moreover, the high expression level of the BmC/EBPZ gene in the testis suggests that the gene is involved in the regulation of reproduction-related genes. Using the CRISPR/Cas9-mediated knockout system, we found that the BmC/EBPZ knockout strains had the same phenotypes as the GMS mutant, that is, the larvae were small. However, the larvae of BmC/EBPZ knockout strains died during the development of the third instar. Therefore, the BmC/EBPZ gene was identified as the major gene responsible for GMS mutation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38113651

RESUMO

More than 600 mutations have been discovered in the history of silkworm domestication. It is important to study the formation mechanism of these mutations to further understand the life and development process of silkworms and agricultural pest control. The silkworm mutant smb was isolated from silkworm strain NCV, and transcriptome analysis was performed on the silkworm mutant. 796 differentially expressed genes (DEGs) were detected at 48 h of the second instar stage with 669 genes significantly upregulated and 127 genes significantly downregulated. During the GO enrichment analysis, it was found that the enrichment of biological processes was mainly concentrated in proteolysis, carbohydrate metabolism, aminoglycan metabolism, organic substance metabolism, protein metabolism and so on. Based on the analysis of KEGG pathways, it revealed that the pathways enriched in lysosomes, AMPK signaling, fatty acid metabolism, PPAR signaling, galactose metabolism, and protein digestion and absorption were the most significant. Through these most significantly enriched GO terms and KEGG pathways, DEGs consistent with the phenotypic characteristics of the smb mutant were identified, including small body size, slow development, and successive death after the fourth instar. These results provided experimental evidence for the potential formation mechanism of smb mutants.


Assuntos
Bombyx , Animais , Bombyx/genética , Transcriptoma , Perfilação da Expressão Gênica
6.
Dev Comp Immunol ; 152: 105114, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38101715

RESUMO

Bombyx mori ras protein3 (BmRas3) is a small molecular protein in the GTPase superfamily, which has the activity of binding guanosine nucleotides and GTP enzymes. It acts as a molecular switch by coupling extracellular signal to different cellular response through the conversion between Ras-GTP conformation and Ras-GDP conformation, thus regulating signal pathways responsible for cell growth, migration, adhesion, survival and differentiation. However, few studies have been done on Ras3 in silkworm, and its function and mechanism are unclear. In this study, we found that the overexpression of BmRas3 inhibited the infection of BmNPV(B. mori nucleopolyhedrovirus), while knockdown of BmRas3 could promote the infection of BmNPV. In addition, after the BmRas3 in silkworm larvae was knockdown, the anti-BmNPV ability of silkworm decreased and the survival rate of silkworm was affected. Additionly in the cells with BmRas3 overexpression, the transcription level of BmMapkk6 、BmP38、BmJNK、BmERK1/2 and BmERK5 were significantly increased after BmNPV infection, and the transcript levels of BmMapkk6、BmP38、BmJNK、BmERK1/2 and BmERK5 were also inhibited to varying degrees This is the first report on the antiviral effect of BmRas3 in silkworm, which provides a new direction for further study on the anti-BmNPV mechanism of silkworm and screening and cultivation of anti-BmNPV silkworm strain.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antivirais/metabolismo , Guanosina Trifosfato/metabolismo
7.
Arch Insect Biochem Physiol ; 114(2): 1-16, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37533191

RESUMO

The Asian corn borer (Ostrinia furnacalis) is an important agricultural pest causing serious damage to economic crops, such as corn and sorghum. The gut is the first line of defense against pathogens that enter through the mouth. Staphylococcus aureus was used to infect the O. furnacalis midgut to understand the midgut immune mechanism against exogenous pathogens to provide new ideas and methods for the prevention and control of O. furnacalis. A sequencing platform was used for genome assembly and gene expression. The unigene sequences were annotated and functionally classified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Significant differences were found in the induced expression profiles before and after infection. Some differentially expressed genes have important relations with lipid metabolism and immune mechanism, suggesting that they play an important role in the innate immune response of O. furnacalis. Furthermore, quantitative real-time polymerase chain reaction assay was used to identify the key genes involved in the signaling pathway, and the expression patterns of these key genes were confirmed. The results could help study the innate immune system of lepidopteran insects and provide theoretical support for the control of related pests and the protection of beneficial insects.


Assuntos
Infecções Bacterianas , Mariposas , Animais , Zea mays , Mariposas/genética , Perfilação da Expressão Gênica/métodos , Insetos
8.
Dev Comp Immunol ; 146: 104736, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37207976

RESUMO

BmTsp.A (Bombyx mori Tetraspanin A) is one of the four transmembrane proteins which are capable to regulate multiple aspects of the immune response and are involved in various stages of viral invasion of the hosts. This study focused on the sequence features, analysis of expression pattern, as well as the effect of BmTsp.A on BmNPV (Bombyx mori nucleopolyhedrovirus) infection in the apoptotic pathway. BmTsp.A features the typical tetraspanins family, including four transmembrane domains and a major large extracellular loop domain. It is highly expressed specifically in the malpighian tubes, and its expression is increased by BmNPV induction for 48 h and 72 h. Overexpression and RNAi (RNA interference) mediated by siRNA reveal that BmTsp.A can promote the infection and replication of the virus. In addition, the overexpression of BmTsp.A regulates BmNPV-induced apoptosis, leading to changes in the expression of apoptosis-related genes and thus affecting viral proliferation. When subjected to stimulation by BmNPV infection, on the one hand, BmTsp.A inhibits Bmp53 through a Caspase-dependent pathway, which consequently promotes the expression of Bmbuffy, thereby activating BmICE to inhibit apoptosis and causing the promotion of viral proliferation. On the other hand, BmTsp.A inhibits the expression of BmPTEN and BmPkc through the phosphatidylinositol 3 kinase (PI3K)/protein kinaseB(AKT) signaling pathway, thus affecting the regulation of apoptosis. To summarize, our results demonstrate that BmTsp.A promotes viral infection and replication by inhibiting apoptosis, which is fundamental for understanding the pathogenesis of BmNPV and the immune defense mechanism of silkworm.


Assuntos
Bombyx , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Insetos/metabolismo , Apoptose , Tetraspaninas/genética , Tetraspaninas/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37163839

RESUMO

The silkworm, Bombyx mori, is an important oligophagous economic insect and feeding habits of different silkworm varieties to artificial diet are different. Research on the mechanisms of feeding habits on artificial diet, and breeding of silkworm varieties adapted on artificial diet, which is a necessary condition for industrial silkworm rearing, is currently lacking. For an artificial diet, Xin was anorexic, whereas Haoyue A showed a strong appetite. When the two varieties were crossed, the F1 generation showed a poor appetite for the artificial diet and had a setae dispersion rate of <50 %. However, the F2 generation, self-bred progeny of F1, had a good appetite for the artificial diet, with a setae dispersion rate of 70 %. Herein, transcriptome analysis was conducted on the F2 generation, comparing individuals with anorexic and preferred feeding habits, and 2188 differential genes were identified, with 1524 genes up-regulated and 934 genes down-regulated. Several genes were identified to contribute to feeding habits, such as genes involved olfactory system, energy supply, and cell proliferation and differentiation. GO enrichment revealed a large number of DEGs related to behavior, growth, signaling, developmental process, response to stimulation, and other pathways. Furthermore, proteins closely related to feeding were expressed differently. Some DEGs were selected for qRT-PCR, and results indicated the reliability of the DEG results. The DEGs between individuals with anorexic and preferred feeding habits were screened by RNA-Seq technology, which provides a reliable reference to study molecule mechanisms of feeding habits on artificial diet.


Assuntos
Bombyx , Humanos , Animais , Bombyx/genética , Transcriptoma , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica/métodos , Dieta , Proteínas de Insetos/genética
11.
FEMS Yeast Res ; 22(1)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36288242

RESUMO

Yeast is widely used in the fermentation industry, and the major challenges in fermentation production system are high capital cost and low reaction rate. High cell-density culture is an effective method to increase the volumetric productivity of the fermentation process, thus making the fermentation process faster and more robust. During fermentation, yeast is subjected to various environmental stresses, including osmotic, ethanol, oxidation, and heat stress. To cope with these stresses, yeast cells need appropriate adaptive responses to acquire stress tolerances to prevent stress-induced cell damage. Since a single stressor can trigger multiple effects, both specific and nonspecific effects, general and specific stress responses are required to achieve comprehensive protection of cells. Since all these stresses disrupt protein structure, the upregulation of heat shock proteins and trehalose genes is induced when yeast cells are exposed to stress. A better understanding of the research status of yeast HCDC and its underlying response mechanism to various stresses during fermentation is essential for designing effective culture control strategies and improving the fermentation efficiency and stress resistance of yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fermentação , Proteínas de Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Estresse Fisiológico
12.
Arch Insect Biochem Physiol ; 111(4): e21955, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35927931

RESUMO

Peptidoglycan recognition proteins (PGRPs) recognize invading microbes via detecting peptidoglycans from microbial cell walls. PGRPs are highly conserved from insects to vertebrates and all play roles during the immune defensive response. Ten putative PGRPs have been identified through transcriptome analysis in the Asian corn borer, Ostrinia furnacalis (Guenée). Whereas, the biochemical functions of most of them have not yet been elucidated. In this study, we found PGRP6 messenger RNA exhibited extremely high expression levels in the midgut, and its transcript level increased dramatically upon bacterial infection. Moreover, the enzyme-linked immunosorbent assay indicated recombinant PGRP6 exhibited a strong binding affinity to peptidoglycans from Micrococcus luteus and Bacillus subtilis, which could agglutinate M. luteus and yeast Pichia pastoris. Additionally, we demonstrated that PGRP6 was involved in the pathway of antimicrobial peptides synthesis, but could not enhance encapsulation and melanization of hemocytes. Overall, our results indicated that O. furnacalis PGRP6 serves as a pattern recognition receptor and detects peptidoglycans from microbes to initiate the immune response.


Assuntos
Mariposas , Zea mays , Animais , Mariposas/genética , Mariposas/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Imunidade Inata , Peptidoglicano
13.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955502

RESUMO

C-type lectins (CTLs) are widely distributed in mammals, insects, and plants, which act as pattern recognition receptors (PRRs) to recognize pathogens and initiate immune responses. In this study, we identified a C-type lectin gene called BmIML-2 from the silkworm Bombyx mori. Its open reading frame (ORF) encodes 314 amino acids, which contain dual tandem C-type lectin-like domain (CTLD). BmIML-2 is highly expressed in the fat body and is significantly induced at 24 h after BmNPV infection. Moreover, overexpression of BmIML-2 dramatically inhibited the proliferation of BmNPV, and knockdown assay via siRNA further validated the inhibition of BmIML-2 on viral proliferation. In addition, transcript level detection of apoptosis-related genes and observation of apoptosis bodies implied that overexpression of BmIML-2 promoted BmNPV-induced apoptosis. Immunofluorescence analysis indicated that BmIML-2 distributed throughout the cytoplasm and was slightly concentrated in the cell membrane. Taken together, our results suggest that BmIML-2 could inhibit in the proliferation of BmNPV by facilitating cell apoptosis.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Apoptose , Bombyx/genética , Proliferação de Células , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Mamíferos/metabolismo , Nucleopoliedrovírus/genética
14.
Front Immunol ; 13: 905357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757693

RESUMO

Phenoloxidase (PO)-catalyzed melanization is a vital immune response in insects for defense against pathogen infection. This process is mediated by clip domain serine proteases and regulated by members of the serpin superfamily. We here revealed that the infection of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) significantly inhibited the PO activity in Ostrinia furnacalis hemolymph and induced the expression of O. furnacalis serpin-4. Addition of recombinant serpin-4 protein to O. furnacalis hemolymph resulted in a great increase of AcMNPV copies. Serpin-4 significantly suppressed the PO activity and the amidase activity in cleaving colorimetric substrate IEARpNA (IEARase activity) of hemolymph. Further experiments indicated it formed covalent complexes with three serine proteases (SP1, SP13 and SP105) and prevented them from cleaving their cognate downstream proteases in vitro. Altogether, O. furnacalis melanization restricted AcMNPV replication and serpin-4 facilitated AcMNPV infection by inhibiting serine proteases, SP1, SP13, and SP105 which were all involved in the melanization response.


Assuntos
Mariposas , Nucleopoliedrovírus , Serpinas , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Serpinas/genética , Serpinas/metabolismo , Zea mays/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-35074722

RESUMO

The silkworm, Bombyx mori, is an important model organism of lepidopteran insects, and its testis is a main male reproductive organ and spermatogenesis place. Studying the testis helps to understand the mechanisms of genetic sterility of lepidopteran insects and to achieve sterile insect technique (SIT) for pest control. Herein, we performed a comparative transcriptome analysis of testes between three biological replicates of the GMS mutant and wild strain 898WB, respectively. In total, 1872 up-regulated genes and 1823 down-regulated genes were identified in the testis of the GMS mutant. Several genes contribute significantly to spermatogenesis and testis development, such as "serine/threonine protein kinase", "organic cation transporter protein", "tyrosine protein kinase", "lncRNAs" and "immune-associated genes". The KEGG pathway analysis shows that the DEGs were annotated to 123 pathways, and 10 pathways were significantly enriched, such as "metabolic pathway", "biosynthesis of amino acids", and "phagosome-lysosome pathway", which are associated with testis development and spermatogenesis. The results of the qPCR expression were consistent with the RNA-seq data, which shows that the RNA-seq results were accurate. The DEGs of the testes between GMS mutant and 898WB were screened by RNA-Seq technology, which provides a reliable reference to understand the molecule mechanism of male sterility of the GMS mutant.


Assuntos
Bombyx , Infertilidade , Animais , Bombyx/genética , Perfilação da Expressão Gênica/métodos , Masculino , Testículo , Transcriptoma
16.
Gene ; 809: 146004, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34648918

RESUMO

Recognition of invading foreign exogenous pathogen is the first step to initiate the innate immune response of insects, which accomplished by the pattern recognition receptors (PRRs). Peptidoglycan recognition proteins (PGRPs) serve as an important type of PRRs, which activate immune response by detecting peptidoglycan of microbial cell wall. In this study, we have cloned the full-length cDNA of PGRP gene called PGRP-S1 from the Diaphania pyloalis (Walker). The open reading frame (ORF) of D. pyloalis PGRP-S1 encodes 211 amino acids which containing a secretion signal peptide and a canonical PGRP domain. Multisequence alignment revealed that PGRP-S1 possess the amino acid residues responsible for zinc binding and amidase activity. D. pyloalis PGRP-S1 exhibited the highest transcript level in fat body and followed in head. The mRNA concentration dramatically increased after an injection of Escherichia coli or Micrococcus luteus. Purified recombinant PGRP-S1 exhibit binding ability to peptidoglycans from Staphylococcus aureus or Bacillus subtilis and cause intensive agglutination of E. coli, M. luteus or S. aureus in the presence of zinc ions. Furthermore, phenoloxidase activity significantly increased when the plasma from larvae was incubated with recombinant PGPR-S1 and peptidoglycans from B. subtilis or M. luteus simultaneously. These results implied that PGRP-S1 was a member involving the prophenoloxidase activation pathway. Overall, our results indicated that D. pyloalis PGRP-S1 serve as a PRR to participate in the recognition of foreign pathogen and prophenoloxidase pathway stimulation.


Assuntos
Proteínas de Transporte/metabolismo , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Peptidoglicano/metabolismo , Aglutinação/efeitos dos fármacos , Animais , Bacillus subtilis/química , Proteínas de Transporte/química , Proteínas de Transporte/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Lipopolissacarídeos/metabolismo , Mariposas/genética , Mariposas/microbiologia , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/química
17.
Insect Sci ; 29(1): 245-258, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34080301

RESUMO

The eicosanoid signaling pathway mediates insect immune reactions to a wide range of stimuli. This pathway begins with the biosynthesis of arachidonic acid (AA) from the hydrolysis of phospholipids catalyzed by phospholipase A2 (PLA2 ). We report here that the PLA2 inhibitor, dexamethasone (DEX), impaired the innate immune response including nodulation, encapsulation, and melanization in Ostrinia furnacalis larvae, while AA partially reversed these effects of DEX. We cloned a full-length complementary DNA encoding a PLA2 , designated as OfsPLA2 , from O. furnacalis. The open reading frame of OfsPLA2 encodes a 195-amino acid residue protein with a 22-residue signal peptide. Sequence alignment analyses indicated that O. furnacalis PLA2 might be a Group III secretory PLA2 . The highest transcript levels of OfsPLA2 were detected in the fat body, and its transcript levels increased dramatically after infection with Escherichia coli, Micrococcus luteus, or Beauveria bassiana. Recombinant OfsPLA2 significantly induced prophenoloxidase (PPO) activation in larval hemolymph in the presence of Ca2+ and encapsulation of agarose beads. Injection of recombinant OfsPLA2 into larvae resulted in increased transcript levels of attacin, defencin, and moricin-3 genes. Our results demonstrate the involvement of the eicosanoid signaling pathway in the innate immune response of O. furnacalis larvae and provide new information about the roles of O. furnacalis secretory PLA2 in activating PPO and antimicrobial peptide production.


Assuntos
Beauveria , Mariposas , Fosfolipases A2/metabolismo , Animais , Imunidade Inata , Proteínas de Insetos/metabolismo , Mariposas/enzimologia , Mariposas/imunologia , Zea mays
18.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360963

RESUMO

The insect immune response is initiated by the recognition of invading microorganisms. Peptidoglycan recognition proteins (PGRPs) function primarily as pattern recognition receptors by specifically binding to peptidoglycans expressed on microbial surfaces. We cloned a full-length cDNA for a PGRP from the Asian corn borer Ostrinia furnacalis (Guenée) and designated it as PGRP1. PGRP1 mRNA was mainly detected in the fat bodies and hemocytes. Its transcript levels increased significantly upon bacterial and fungal challenges. Purified recombinant PGRP1 exhibited binding activity to the gram-positive Micrococcus luteus, gram-negative Escherichia coli, entomopathogenic fungi Beauveria bassiana, and yeast Pichia pastoris. The binding further induced their agglutination. Additionally, PGRP1 preferred to bind to Lys-type peptidoglycans rather than DAP-type peptidoglycans. The addition of recombinant PGRP1 to O. furnacalis plasma resulted in a significant increase in phenoloxidase activity. The injection of recombinant PGRP1 into larvae led to a significantly increased expression of several antimicrobial peptide genes. Taken together, our results suggest that O. furnacalis PGRP1 potentially recognizes the invading microbes and is involved in the immune response in O. furnacalis.


Assuntos
Imunidade Inata , Proteínas de Insetos/metabolismo , Lepidópteros/genética , Peptidoglicano/metabolismo , Animais , Beauveria/patogenicidade , Corpo Adiposo/metabolismo , Hemócitos/metabolismo , Proteínas de Insetos/genética , Lepidópteros/imunologia , Lepidópteros/microbiologia , Micrococcus luteus/patogenicidade , Monofenol Mono-Oxigenase/metabolismo , Peptidoglicano/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Saccharomycetales/patogenicidade
19.
Arch Insect Biochem Physiol ; 107(1): e21774, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33690914

RESUMO

The expression levels of some intrinsic genes, protease activity, and regulation of signaling pathways were distinct during different growth and development stages in the silkworm, Bombyx mori. The silkworm mutant mini was discovered from the normal silkworm strain S8V, and the body-size of the mini mutant was smaller than the wild-type from the second-instar and the difference became more significant in the following stages. In this study, genetic analysis of mini mutant showed that mini mutant was controlled by a single recessive gene, manifested as homozygous lethal. Then, the transcriptome analysis of the mini mutant indicated that 2944 differentially expressed genes (DEGs) were identified from the silkworm in the 48 h of the second-instar, of which 1638 genes in the mini mutants were upregulated and 1306 genes were downregulated. These DEGs were mainly distributed in the biological process, cellular component, and molecular function. The functional annotation based on the KEGG database showed that these genes were mainly clustered in metabolic pathways, fatty acid metabolism pathways, ribosome biogenesis in eukaryotes, and so on. Further analysis indicated that some genes involved in the growth and metabolism including enzyme genes, juvenile hormone, and ecdysone exhibited different transcriptional levels. These results provided new experimental evidence regarding the mechanism of the underlying formation of mini mutants.


Assuntos
Bombyx , Mutação , Transcriptoma , Animais , Tamanho Corporal/genética , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genes de Insetos , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento
20.
J Insect Sci ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33511414

RESUMO

Insect innate immunity is initiated by the special recognition and binding of the foreign pathogens, which is accomplished by the pattern recognition receptors (PRRs). As an important type of PRRs, C-type lectins (CTLs) play various roles in insect innate immunity, including pathogen recognition, stimulation of prophenoloxidase, regulation of cellular immunity and so on. In this study, we have cloned the full-length cDNA of a CTL gene named CTL-S6 from the silkworm, Bombyx mori. The open reading frame (ORF) of B. mori CTL-S6 encodes 378 amino acids, which contain a secretion signal peptide. The mRNA of CTL-S6 exhibited the highest transcriptional level in the midgut. Its transcriptional level increased dramatically in fat body and hemocytes upon Escherichia coli or Micrococcus luteus challenge. Purified recombinant CTL-S6 could bind to bacterial cell wall components, including peptidoglycan (PGN, from Bacillus subtilis) and lipopolysaccharide (LPS, from E. coli 0111:B4), and recombinant CTL-S6 was involved in the encapsulation and melanization of hemocytes. Furthermore, the addition of recombinant CTL-S6 to the hemolymph of silkworm resulted in a significant increase in phenoloxidase activity. Overall, our results indicated that B. mori CTL-S6 may serve as a PRR for the recognition of foreign pathogens, prophenoloxidase pathway stimulation and involvement in the innate immunity.


Assuntos
Escherichia coli/fisiologia , Imunidade Inata/genética , Proteínas de Insetos/genética , Lectinas Tipo C/genética , Micrococcus luteus/fisiologia , Receptores de Reconhecimento de Padrão/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Bombyx , Corpo Adiposo/imunologia , Perfilação da Expressão Gênica , Hemócitos/imunologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Filogenia , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...