Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Med J (Engl) ; 121(20): 1980-6, 2008 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19080260

RESUMO

BACKGROUND: A satisfactory animal model of breast cancer metastasizing to bone is unavailable. In this study, we used human breast cancer stem-like cells and human bone to build a novel "human-source" model of human breast cancer skeletal metastasis. METHODS: Human breast cancer stem-like cells, the CD44+/CD24-/lower subpopulation, was separated and cultured. Before injection with the stem-like cells, mice were implanted with human bone in the right or left dorsal flanks. Animals in Groups A, B, and C were injected with 1 x 10(5), 1 x 10(6) human breast cancer stem-like cells, and 1 x 10(6) parental MDA-MB-231 cells, respectively. A positive control group (D) without implantation of human bone was also injected with 1 x 10(6) MDA-MB-231 cells. Immunohistochemistry was performed for determination of CD34, CD105, smooth muscle antibody, CD44, CD24, cytokine, CXC chemokine receptor-4 (CXCR4), and osteopontin (OPN). mRNA levels of CD44, CD24, CXCR4, and OPN in bone metastasis tissues were analyzed by real-time quantitative polymerase chain reaction (PCR). RESULTS: Our results demonstrated that cells in implanted human bones of group B, which received 1 x 10(6) cancer stem-like cells, stained strongly positive for CD44, CXCR4, and OPN, whereas those of other groups showed no or minimum staining. Moreover, group B had the highest incidence of human bone metastasis (77.8%, P = 0.0230) and no accompaniment of other tissue metastasis. The real-time PCR showed an increase of CD44, CXCR4, and OPN mRNA in metastatic bone tissues in group B compared with those of groups C and D, however the expression of CD24 mRNA in group B were the lowest. CONCLUSIONS: In the novel "human source" model of breast cancer, breast cancer stem-like cells demonstrated a higher human bone-seeking ability. Its mechanism might be related to the higher expressions of CD44, CXCR4, and OPN, and the lower expression of CD24 in breast cancer stem-like cells.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Antígeno CD24/análise , Modelos Animais de Doenças , Receptores de Hialuronatos/análise , Células-Tronco Neoplásicas/patologia , Animais , Linhagem Celular Tumoral , Feminino , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Imuno-Histoquímica , Camundongos , Osteopontina/análise , Fenótipo , Receptores CXCR4/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...