Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2310109, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874476

RESUMO

Heat-shock protein 90 (Hsp90) plays a crucial role in tumorigenesis and tumor progression; however, its mechanism of action in gastric cancer (GC) remains unclear. Here, the role of Hsp90 in GC metabolism is the focus of this research. High expression of Hsp90 in GC tissues can interact with glycolysis, collectively affecting prognosis in clinical samples. Both in vitro and in vivo experiments demonstrate that Hsp90 is able to regulate the migration and stemness properties of GC cells. Metabolic phenotype analyses indicate that Hsp90 influences glycolytic metabolism. Mechanistically, Hsp90 interacts with glycolysis-related enzymes, forming multienzyme complexes to enhance glycolysis efficiency and yield. Additionally, Hsp90 binds to cytoskeleton-related proteins, regulating the regional distribution of glycolytic enzymes at the cell margin and lamellar pseudopods. This effect could lead to a local increase in efficient energy supply from glycolysis, further promoting epithelial-mesenchymal transition (EMT) and metastasis. In summary, Hsp90, through its interaction with metabolic enzymes related to glycolysis, forms multi-enzyme complexes and regulates regional distribution of glycolysis by dynamic cytoskeletal adjustments, thereby promoting the migration and stemness of GC cells. These conclusions also support the potential for a combined targeted approach involving Hsp90, glycolysis, and the cytoskeleton in clinical therapy.

2.
J Transl Med ; 21(1): 78, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739402

RESUMO

BACKGROUND: Acral melanoma (AM) is the most common subtype in Chinese melanoma patients with a very poor prognosis. However, our understanding of the disease pathogenesis and molecular landscape is limited by the few studies that have been conducted. Here, we profiled the clinical characteristics, mutational landscapes and tumor immune microenvironment of AM patients to gain insights into disease characteristics and potential treatment strategies. METHODS: A total of 90 AM patients were enrolled and their tissue samples were subjected to next-generation sequencing and multiplexed immunohistochemistry tests. Kaplan-Meier curves and log-rank tests were used to analyze the prognostic potential of various genetic aberrations and immune cell compositions in AM. RESULTS: The median disease-free survival was 21.3 months and estimated median overall survival (OS) was 60 months. More advanced stages, older ages and thickness of greater than 4 mm were associated with worse prognosis in AM patients (HR = 2.57, 95% CI 1.25-5.29, p = 0.01; HR = 2.77, 95% CI 1.22-6.28, p = 0.02; HR = 3.43, 95% CI 1.51-7.82, p < 0.01, respectively), while patients who received post-surgical treatments had better survival (HR = 0.36, 95% CI 0.17-0.76, p = 0.01). The most frequently altered genes included BRAF (14.5%), KIT (16.9%), NRAS (12%), NF1 (10.8%), APC (7.2%), and ARID2 (6%). Copy number variations (CNV) were commonly found in CCND1 (19.3%), CDK4 (19.3%), MDM2 (14.5%) and FGF19 (12%). CDK4 amplifications was independently associated with shorter OS in AM patients (HR = 3.61, 95% CI 1.38-9.46, p = 0.01). CD8 + T cells (p < 0.001) and M1 macrophages (p = 0.05) were more highly enriched in the invasive margin than in the tumor center. Patients with higher levels of M1 macrophage infiltration in the invasive margin derived markedly longer OS (HR = 0.43, 95% CI 0.20-0.95, p = 0.03). Interestingly, in CDK4-amplified patients, there tended to be a low level of M1 macrophage infiltration in the invasive margin (p = 0.06), which likely explains the poor prognosis in such patients. CONCLUSIONS: Our study provided a comprehensive portrait of the clinicopathological features, genetic aberrations and tumor microenvironment profiles in AM patients and identified candidate prognostic factors, which may facilitate development of additional therapeutic options and better inform clinical management of AM patients. Based on these prognostic factors, further studies should focus on enhancing the infiltration of M1 macrophages, especially in CDK4-amplified AM patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Prognóstico , Variações do Número de Cópias de DNA/genética , Microambiente Tumoral/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Melanoma Maligno Cutâneo
6.
Small ; 16(32): e2002169, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578378

RESUMO

The ongoing global novel coronavirus pneumonia COVID-19 outbreak has engendered numerous cases of infection and death. COVID-19 diagnosis relies upon nucleic acid detection; however, currently recommended methods exhibit high false-negative rates and are unable to identify other respiratory virus infections, thereby resulting in patient misdiagnosis and impeding epidemic containment. Combining the advantages of targeted amplification and long-read, real-time nanopore sequencing, herein, nanopore targeted sequencing (NTS) is developed to detect SARS-CoV-2 and other respiratory viruses simultaneously within 6-10 h, with a limit of detection of ten standard plasmid copies per reaction. Compared with its specificity for five common respiratory viruses, the specificity of NTS for SARS-CoV-2 reaches 100%. Parallel testing with approved real-time reverse transcription-polymerase chain reaction kits for SARS-CoV-2 and NTS using 61 nucleic acid samples from suspected COVID-19 cases show that NTS identifies more infected patients (22/61) as positive, while also effectively monitoring for mutated nucleic acid sequences, categorizing types of SARS-CoV-2, and detecting other respiratory viruses in the test sample. NTS is thus suitable for COVID-19 diagnosis; moreover, this platform can be further extended for diagnosing other viruses and pathogens.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Nanoporos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Betacoronavirus/classificação , COVID-19 , Infecções por Coronavirus/epidemiologia , DNA Viral/genética , DNA Viral/isolamento & purificação , Genes Virais , Humanos , Limite de Detecção , Mutação , Nanotecnologia , Técnicas de Amplificação de Ácido Nucleico/estatística & dados numéricos , Pandemias , Pneumonia Viral/epidemiologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...