Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2023: 7535594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936670

RESUMO

The purpose is to study the soil's water-soluble organic matter and improve the utilization rate of the soil layer. This exploration is based on the theories of three-dimensional fluorescence spectroscopy, deep learning, and biochar. Chernozem in Harbin City, Heilongjiang Province, is taken as the research object. Three-dimensional fluorescence spectra and a deep learning model are used to analyze the content of water-soluble organic matter in the soil layer after continuous application of corn biochar for six years and to calculate different fluorescence indexes in the whole soil depth. Among them, the three-dimensional fluorescence spectrum theory provides the detection standard for the application effect detection of biochar, the deep learning theory provides the technical support for this exploration, and the biochar theory provides the specific research direction. The results show that the application of corn biochar for six consecutive years significantly reduces the average content of water-soluble organic matter in different soil layers. Among them, the highest average content of soil water-soluble organic matter is "nitrogen, potassium, phosphorous" (NPK) and the lowest is "boron, carbon" (BC). Comparing the soil with BC alone, in the topsoil, the second section (330-380 nm/200-250 nm) with BC + NPK increases by 13.3%, the third section (380-550 nm/220-250 nm) increases by 8.4%, and the fourth section (250-380 nm/250-600 nm) increases by 50.1%. The combination of nitrogen (N) + BC has a positive effect of 20.7%, 12.2%, and 28.4% on sections I, II, and IV, respectively. In addition, in the topsoil, the combination of NPK + BC significantly increases the content of acid-like substances compared with the application of BC alone. In the black soil, with or without fertilizer NPK, there is no significant difference in the level of fulvic acid-like components. The prediction of soil water-soluble organic matter after continuous application of corn biochar based on three-dimensional fluorescence spectra and deep learning is carried out, which has reference significance for the rapid identification and early prediction of subsequent soil activity.


Assuntos
Aprendizado Profundo , Solo , Solo/química , Zea mays , Água , Fluorescência , Carbono , Nitrogênio/análise
2.
Plants (Basel) ; 12(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36840177

RESUMO

At present, extracting water-soluble organic matter (WSOM) from agricultural organic waste is primarily used to evaluate soil organic matter content in farmland. However, only a few studies have focused on its vertical behavior in the soil profile. This study aims to clarify the three-dimensional fluorescence spectrum characteristics of the WSOM samples in 0-60 cm black soil profile before and after different chemical fertilizer treatments after six years of fertilization. Fluorescence spectroscopy combined with fluorescence and ultraviolet-visible (UV-Vis) spectroscopies are used to divide four different fertilization types: no fertilization (T0), nitrogen phosphorus potassium (NPK) (T1), biochar (T2), biochar + NPK (T3), and biochar + N (T4) in a typical black soil area. The vertical characteristics of WSOC are also analyzed. The results showed that after six years of nitrogen application, T2 had a significant effect on the fluorescence intensity of Zone II (decreasing by 9.6% in the 0-20 cm soil layer) and Zone V (increasing by 8.5% in the 0-20 cm soil layer). The fluorescent components identified in each treatment group include ultraviolet radiation A humic acid-like substances (C1), ultraviolet radiation C humic acid-like substances (C2), and tryptophan-like substance (C3). As compared with the land with T1, the content of C2 in the 20-60 cm soil layer with T2 was lower, while that of C2 in the surface and subsoil with T3 was higher. In addiiton, there were no significant differences in the contents of C1, C2, and C3 by comparing the soils applied with T3 and T4, respectively. The composition of soil WSOM was found to be significantly influenced by the addition of a mixture of biochar and chemical fertilizers. The addition of biochar alone exerted a positive effect on the humification process in the surface soil (0-10 cm). NPK treatment could stimulate biological activity by increasing biological index values in deeper soil layers (40-50 cm). Nitrogen is the sovereign factor that improves the synergism effect of chemical fertilizer and biochar during the humification process. According to the UV-Vis spectrum and optical index, soil WSOM originates from land and microorganisms. This study reveals the dynamics of WSOC in the 0-60 cm soil layer and the biogeochemical effect of BC fertilizer treatment on the agricultural soil ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...