Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37372513

RESUMO

Anthocyanins are important secondary metabolites in fruits, and anthocyanin accumulation in the flesh of peach exhibits a spatial pattern, but the relevant mechanism is still unknown. In this study, the yellow-fleshed peach, cv. 'Jinxiu', with anthocyanin accumulation in the mesocarp around the stone was used as the experimental material. Red flesh (RF) and yellow flesh (YF) were sampled separately for flavonoid metabolite (mainly anthocyanins), plant hormone, and transcriptome analyses. The results showed that the red coloration in the mesocarp was due to the accumulation of cyanidin-3-O-glucoside, with an up-regulation of anthocyanin biosynthetic genes (F3H, F3'H, DFR, and ANS), transportation gene GST, and regulatory genes (MYB10.1 and bHLH3). Eleven ERFs, nine WRKYs, and eight NACs were also defined as the candidate regulators of anthocyanin biosynthesis in peach via RNA-seq. Auxin, cytokinin, abscisic acid (ABA), salicylic acid (SA), and 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor) were enriched in the peach flesh, with auxin, cytokinin, ACC, and SA being highly accumulated in the RF, but ABA was mainly distributed in the YF. The activators and repressors in the auxin and cytokinin signaling transduction pathways were mostly up-regulated and down-regulated, respectively. Our results provide new insights into the regulation of spatial accumulation pattern of anthocyanins in peach flesh.

2.
Mitochondrial DNA B Resour ; 8(1): 136-140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685644

RESUMO

The complete chloroplast (cp) genome of Prunus phaeosticta (Hance) Maxim. has been characterized by reference-based assembly using Illumina paired-end data. The circular complete cp genome is 158,752 bp in length, comprising a large single-copy (LSC) region of 87,085 bp, a small single-copy (SSC) region of 18,923 bp, and a pair of inverted repeats (IRs) of 26,372 bp.A total of 129 functional genes were identified, including 84 protein-coding genes, 37 tRNA genes, and 8 ribosomal RNA genes. The phylogenetic analysis showed that P. phaeosticta displayed a kinship to Prunus zippeliana.

3.
Front Plant Sci ; 13: 967797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186019

RESUMO

Phyllosphere microorganisms are closely linked to plant health. This study investigated the effect of ozonated water, mancozeb, and thiophanate-methyl on phyllosphere microorganisms in strawberry plants of the "Hongyan" variety. Sequencing analysis of the phyllosphere bacterial and fungal communities was performed using 16S rRNA gene fragment and ITS1 region high-throughput sequencing after spraying ozonated water, mancozeb, thiophanate-methyl, and clear water. Proteobacteria, Actinobacteria, and Firmicutes were the dominant bacterial phyla in strawberry. The relative abundance of Proteobacteria (82.71%) was higher in the ozonated water treatment group than in the other treatment groups, while the relative abundance of Actinobacteria (9.38%) was lower than in the other treatment groups. The strawberry phyllosphere fungal communities were mainly found in the phyla Basidiomycota and Ascomycota. The relative abundance of Basidiomycota was highest in the ozonated water treatment group (81.13%), followed by the mancozeb treatment group (76.01%), while the CK group only had an abundance of 43.38%. The relative abundance of Ascomycota was lowest in the ozonated water treatment group (17.98%), 23.12% in the mancozeb treatment group, 43.39% in the thiophanate-methyl treatment group, and 55.47% in the CK group. Pseudomonas, Halomonas, and Nesterenkonia were the dominant bacterial genera on strawberry surfaces, while Moesziomyces, Aspergillus, and Dirkmeia were the dominant fungal genera. Ozonated water was able to significantly increase the richness of bacteria and fungi and decrease fungal diversity. However, bacterial diversity was not significantly altered. Ozonated water effectively reduced the relative abundance of harmful fungi, such as Aspergillus, and Penicillium, and enriched beneficial bacteria, such as Pseudomonas and Actinomycetospora, more effectively than mancozeb and thiophanate-methyl. The results of the study show that ozonated water has potential as a biocide and may be able to replace traditional agents in the future to reduce environmental pollution.

4.
Front Nutr ; 9: 965796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046134

RESUMO

The aim of this study is to acquire information for future breeding efforts aimed at improving fruit quality via effects on aroma by comparing the diversity of Chinese local peach cultivars across 10 samples of three varieties (honey peach, yellow peach, and flat peach). The volatile components of peach fruits were analyzed and identified by gas chromatography-ion mobility spectrometry (GC-IMS) combined with gas chromatography-mass spectrometry (GC-MS), and the main flavor components of peach fruit were determined by relative odor activity value (ROAV) and principal component analysis (PCA). A total number of 57 volatile components were detected by GC-IMS, including eight aldehydes, nine alcohols, eight ketones, 22 esters, two acids, two phenols, two pyrazines, one thiophene, one benzene, and two furans. The proportion of esters was up to 38.6%. A total of 88 volatile components were detected by GC-MS, among which 40 were key aroma compounds, with an ROAV ≥ 1. The analysis results showed that alcohols, ketones, esters, and aldehydes contributed the most to the aroma of peach fruit. PCA demonstrated that (E,E)-2, 6-non-adienal, γ-decalactone, ß-ionone, and hexyl hexanoate were the key contributors to the fruit aroma. A reference for future directional cultivation and breeding could be provided by this study through evaluating the aroma quality of the peach at the cultivar level. The possible reasonable application of these peach fruits pulp will be guided through these research.

5.
Front Plant Sci ; 13: 936252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909778

RESUMO

In recent years, plant metabolomics and microbiome studies have suggested that the synthesis and secretion of plant secondary metabolites are affected by microbial-host symbiotic interactions. In this study, six varieties of fingered citron (Citrus medica 'Fingered') are sampled to study their phyllosphere bacterial communities and volatile organic compounds (VOCs). High-throughput sequencing is used to sequence the V5-V7 region of the 16S rRNA of the fingered citron phyllosphere bacteria, and the results showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the dominant bacterial phylum in the phyllosphere of fingered citron. There were significant differences in the phyllosphere bacteria community between XiuZhen and the remaining five varieties. The relative abundance of Actinomycetospora was highest in XiuZhen, and Halomonas, Methylobacterium, Nocardioides, and Pseudokineococcus were also dominant. Among the remaining varieties, Halomonas was the genus with the highest relative abundance, while the relative abundances of all the other genera were low. Headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) were used to analyze and identify the aroma compounds of six different fingered citron, and a total of 76 aroma compounds were detected in six varieties. Pinene, geraniol, and linalool were found to be the primary VOCs that affect the aroma of fingered citron based on relative odor activity value. The correlation analysis showed 55 positive and 60 negative correlations between the phyllosphere bacterial flora and aroma compounds of fingered citron. The top 10 genera in the relative abundance were all significantly associated with aroma compounds. This study provides deep insight into the relation between bacteria and VOCs of fingered citron, and this may better explain the complexity of the analysis of bacterial and metabolic interactions.

6.
Phys Chem Chem Phys ; 23(29): 15685-15692, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34270659

RESUMO

The electrocatalytic hydrogen evolution reaction (HER) for water splitting is crucial for the sustainable production of clean hydrogen fuel, while the high cost of Pt catalysts impedes its commercialization. Herein, we have performed a systematic theoretical study on the electrocatalytic HER over single-atom catalysts (SACs) based on low-cost TiN. Specifically, the TiN(100) surface with a Ti or N vacancy has been considered as the support. 20 transition-metal (TM) atoms and 3 nonmetallic atoms are embedded into the Ti or N vacancy, accordingly denoted as M@Tiv or M@Nv. All the single atoms can be stabilized by the surface vacancies, controlled by the adjustable chemical potential. Interestingly, for TM-embedded TiN(100), the hydrogen binding is much stronger over M@Nv than M@Tiv, which can be attributed to the more localized d states of the TM atoms anchored by the N vacancies, indicating a strong coordination effect. Among 43 catalysts, 10 (Ni, Zn, Nb, Mo, Rh@Tiv, and Au, Pd, W, Mo, B@Nv) were predicted to have high HER catalytic activity with near-zero hydrogen adsorption free energy. For the further gaseous hydrogen evolution, Zn@Tiv can adopt both Tafel (with an energy barrier of 0.68 eV) and Heyrovsky mechanisms, while the others may prefer the Heyrovsky mechanism. This work provides a promising strategy to realize cost-efficient electrocatalysts for the HER, and highlights the important role of the local coordination environment for SACs.

7.
Mol Plant Pathol ; 22(7): 817-828, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951267

RESUMO

In this study, we used virus-mediated gene silencing technology and found that the HSP17.4 gene-silenced cultivar Sweet Charlie plants were more susceptible to Colletotrichum gloeosporioides than the wild-type Sweet Charlie, and the level of infection was even higher than that of the susceptible cultivar Benihopp. The results of differential quantitative proteomics showed that after infection with the pathogen, the expression of the downstream response genes NPR1, TGA, and PR-1 of the salicylic acid (SA) signalling pathway was fully up-regulated in the wild-type Sweet Charlie, and the expression of the core transcription factor MYC2 of the jasmonic acid (JA) pathway was significantly down-regulated. The expression of the proteins encoded by these genes did not change significantly in the HSP17.4-silenced Sweet Charlie, indicating that the expression of HSP17.4 activated the up-regulation of downstream signals of SA and inhibited the JA signal pathway. The experiments that used SA, methyl jasmonate, and their inhibitors to treat plants provide additional evidence that the antagonism between SA and JA regulates the resistance of strawberry plants to C. gloeosporioides.


Assuntos
Colletotrichum/fisiologia , Resistência à Doença , Fragaria/genética , Proteínas de Choque Térmico/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Acetatos/metabolismo , Ciclopentanos/metabolismo , Fragaria/imunologia , Fragaria/microbiologia , Proteínas de Choque Térmico/genética , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
8.
Materials (Basel) ; 12(5)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862095

RESUMO

The use of desulfurization gypsum and steel/furnace slag composite cementitious material (DGSC) to solidify soft soil can fully utilize industrial wastes, reduce cement use and protect natural resources. By studying the unconfined compressive strengths of DGSC-solidified soil with different mix ratios, water-binder ratios and curing periods, the influence of those factors on the unconfined compressive strength of the soil can be analyzed. Furthermore, the quasi-water-cement ratio is introduced to predict the strength of the DGSC-solidified soil. The results show that the higher the DGSC content is, the better its effect on the soft soil. The variation in the unconfined compressive strength of DGSC-solidified soil overtime can be described by the same trend as that of cement-solidified soil but its early strength is lower than that of cement-solidified soil. When the water-binder ratio of the DGSC-solidified soil is the same as that of the cement-solidified soil, after a28-day curing period, the content of DGSC is higher than that of the 5% cement content, so the DGSC solidification effect is comparable to that of cement. Therefore, using DGSC instead of cement as a soft soil solidifying agent can meet the strength requirements of solidified soil.

9.
Materials (Basel) ; 12(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791520

RESUMO

To accurately obtain the performance of concrete structures in coastal regions, it is necessary to correctly understand the damage evolution law of reinforced concrete (RC) members under real working conditions. In this paper, four RC beams, subjected to different levels of corrosion and sustained load, are first tested. Reinforcement corrosion coupled with sustained load increases the number and width of cracks at the soffit of beams but decreases their loading capacities. Crack width of the corroded beam under 50% of designed load is two times of that under 30% of designed load. Residual loading capacities of the corroded beams subjected to 30% and 50% of designed load are 87.5% and 81.8% of the control beam. A finite element model is developed for the corroded RC beams. Due to less confinement, concrete below and at the sides of reinforcements is subjected to a higher stress, compared to concrete above the reinforcements. Corrosion expansion of reinforcements is successfully modelled by a temperature-filed method, as it properly simulates the damage evolution of the corroded RC beams. As a result, concrete cracking, caused by the reinforcement corrosion, is well captured. Coupling reinforcement corrosion with sustained load significantly increases the damage level in RC beams, particularly for those subjected to a high sustained load. The whole damage evolution process of concrete cracking due to corrosion expansion under the coupling effect of sustained loading and environment can be simulated, thus providing a reference for the durability evaluation, life prediction, and numerical simulation of concrete structure.

10.
J Hazard Mater ; 353: 421-430, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29702457

RESUMO

This research investigated the capacities of recycled aggregate concrete adopting entire concrete waste reuse model in degrading NO2. Two major issues within environmental sustainability were addressed: concrete waste reuse rate and mitigation of hazards substances in the polluted air. The study consisted of two stages: identification of proper replacement rates of recycled concrete wastes in new concrete mixture design, and the evaluation of photocatalytic performance of recycled aggregate concrete in degrading NO2. It was found that replacement rates up to 3%, 30%, and 50% for recycled power, recycled fine aggregate, and recycled coarse aggregate respectively could be applied in concrete mixture design without deteriorating concrete strength. Recycled aggregates contained both positive attributes ("internal curing") and negative effects (e.g., lower hardness) to concrete properties. It was found that 30%-50% of natural coarse aggregate replaced by recycled coarse aggregates coated with TiO2 would significantly improve the photocatalytic performance of concrete measured by degradation rate of NO2. Micro-structures of recycled aggregates observed under microscope indicated that soaking recycled aggregates in TiO2 solution resulted in whiskers that filled the porosity within recycled aggregates which enhanced concrete strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...