Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 677803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558514

RESUMO

Objective: The objective of this study is to develop a radiomics nomogram for the presurgical distinction of benign and malignant round-like solid tumors. Methods: This retrospective trial enrolled patients with round-like tumors who had received preoperative digital mammography (DM) no sooner than 20 days prior to surgery. Breast tumors were segmented manually on DM images in order to extract radiomic features. Four machine learning classification models were constructed, and their corresponding areas under the receiver operating characteristic (ROC) curves (AUCs) for differential tumor diagnosis were calculated. The optimal classifier was then selected for the validation set. After this, predictive machine learning models that employed radiomic features and/or patient features were applied for tumor assessment. The models' AUC, accuracy, negative (NPV) and positive (PPV) predictive values, sensitivity, and specificity were then derived. Results: In total 129 cases with benign and malignant tumors confirmed by pathological analysis were enrolled in the study, including 91 and 38 in the training and test sets, respectively. The DM images yielded 1,370 features per patient. For the machine learning models, the Least Absolute Shrinkage and Selection Operator for Gradient Boosting Classifier turned out to be the optimal classifier (AUC=0.87, 95% CI 0.76-0.99), and ROC curves for the radiomics nomogram and the DM-only model were statistically different (P<0.001). The radiomics nomogram achieved an AUC of 0.90 (95% CI 0.80-1.00) in the test cohort and was statistically higher than the DM-based model (AUC=0.67, 95% CI 0.51-0.84). The radiomics nomogram was highly efficient in detecting malignancy, with accuracy, sensitivity, specificity, PPV, and NPV in the validation set of 0.868, 0.950, 0.778, 0.826, and 0.933, respectively. Conclusions: This radiomics nomogram that combines radiomics signatures and clinical characteristics represents a noninvasive, cost-efficient presurgical prediction technique.

2.
Gland Surg ; 9(6): 2005-2016, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33447551

RESUMO

BACKGROUND: This study aimed to investigate the diagnostic performance of radiomic features based on digital mammography (DM) in the differential diagnosis of benign and malignant round-like (round and oval) solid tumors with circumscribed or obscured margins but without suspicious malignant or benign macrocalcifications and to investigate whether quantitative radiomic features can distinguish triple-negative breast cancer (TNBC) from non-TNBC (NTNBC). METHODS: This retrospective study included 112 patients with round-like tumors who underwent DM within 20 days preoperatively. Breast masses were segmented manually on the DM images, then radiomic features were extracted. The predictive models were used to distinguish between benign and malignant tumors and to predict TNBC in invasive ductal carcinoma. The receiver operating characteristic curves (ROCs) for these models were obtained for initial DM characteristics, radiomic features to predict malignant tumors and TNBC. The decision curve was obtained to evaluate the clinical usefulness of the model for the prediction of benign or malignant tumors. RESULTS: The study cohort included 79 patients with pathologically confirmed malignant masses and 33 patients with benign (training cohort: n=79; testing cohort: n=33). A total of 396 features were extracted from the DM images for each patient. The radiomics model for the prediction of malignant tumors achieved an area under the receiver operating characteristic curve (AUC) of 0.88 [95% confidence interval (CI), 0.76-1.00] in the testing cohort; the radiomics model for the prediction of TNBC achieved an AUC of 0.84 (95% CI, 0.73-0.96). In contrast, DM characteristics alone poorly predicted malignant tumors, with the density achieving an AUC 0.69 (95% CI, 0.59-0.79); there was no significant difference in DM characteristics between TNBC and NTNBC (P>0.05, all). The decision curve showed the good clinical usefulness of the model for the prediction of malignant tumors. CONCLUSIONS: This study showed that DM-based radiomics can accurately discriminate between benign and malignant round-like tumors with circumscribed or obscured margins but without suspicious malignant or benign macrocalcifications. Additionally, it can be used to predict TNBC in invasive ductal carcinoma. DM-based radiomics can aid radiologists in mammogram reading, clinical diagnosis and decision-making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...