Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9559-9569, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710655

RESUMO

Harmful cyanobacterial blooms are frequent and intense worldwide, creating hazards for aquatic biodiversity. The potential estrogen-like effect of Microcystin-LR (MC-LR) is a growing concern. In this study, we assessed the estrogenic potency of MC-LR in black-spotted frogs through combined field and laboratory approaches. In 13 bloom areas of Zhejiang province, China, the MC-LR concentrations in water ranged from 0.87 to 8.77 µg/L and were correlated with sex hormone profiles in frogs, suggesting possible estrogenic activity of MC-LR. Tadpoles exposed to 1 µg/L, an environmentally relevant concentration, displayed a female-biased sex ratio relative to controls. Transcriptomic results revealed that MC-LR induces numerous and complex effects on gene expression across multiple endocrine axes. In addition, exposure of male adults significantly increased the estradiol (E2)/testosterone (T) ratio by 3.5-fold relative to controls. Downregulation of genes related to male reproductive endocrine function was also identified. We also showed how MC-LR enhances the expression of specific estrogen receptor (ER) proteins, which induce estrogenic effects by activating the ER pathway and hypothalamic-pituitary-gonadal (HPG) axis. In aggregate, our results reveal multiple lines of evidence demonstrating that, for amphibians, MC-LR is an estrogenic endocrine disruptor at environmentally relevant concentrations. The data presented here support the need for a shift in the MC-LR risk assessment. While hepatoxicity has historically been the focus of MC-LR risk assessments, our data clearly demonstrate that estrogenicity is a major mode of toxicity at environmental levels and that estrogenic effects should be considered for risk assessments on MC-LR going forward.


Assuntos
Estrogênios , Animais , Masculino , Feminino , Microcistinas/toxicidade , Ranidae/genética , Ranidae/metabolismo , Toxinas Marinhas , Poluentes Químicos da Água/toxicidade
2.
Environ Pollut ; 335: 122358, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37567408

RESUMO

Machine learning (ML) and deep learning (DL) possess excellent advantages in data analysis (e.g., feature extraction, clustering, classification, regression, image recognition and prediction) and risk assessment and management in environmental ecology and health (EEH). Considering the rapid growth and increasing complexity of data in EEH, it is of significance to summarize recent advances and applications of ML and DL in EEH. This review summarized the basic processes and fundamental algorithms of the ML and DL modeling, and indicated the urgent needs of ML and DL in EEH. Recent research hotspots such as environmental ecology and restoration, environmental fate of new pollutants, chemical exposures and risks, chemical hazard identification and control were highlighted. Various applications of ML and DL in EEH demonstrate their versatility and technological revolution, and present some challenges. The perspective of ML and DL in EEH were further outlined to promote the innovative analysis and cultivation of the ML-driven research paradigm.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Algoritmos , Saúde Ambiental , Ecologia
3.
Environ Sci Technol ; 57(32): 11803-11813, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37505069

RESUMO

Increased epidemiological evidence indicates the association of bisphenol exposure with human vascular disorders, while the underlying mechanism has not been clarified. Here, we sought to unveil the potential angiogenic effect and the underlying mechanism of bisphenols with different structural features using endothelial cells treated with an environmentally relevant concentration of bisphenols (range: 1 nM to 10 µM) and a C57BL/6 mouse model fed with doses of 0.002, 0.02, 2, and 20 mg/kg BW/day for 5 weeks. Bisphenol A (BPA) and bisphenol S (BPS) at a 1 nM level significantly increased tube formation by 45.1 and 30.2% and induced the microvessel sprouting, while tube length and microvessel sprouting were significantly inhibited by 37.2 and 55.7% after exposure to tetrabromobisphenol S (TBBPS) at 1 µM, respectively. Mechanistically, TBBPA and TBBPS significantly inhibited the interaction between phosphatidylinositol 3-kinase (PI3K) and thyroid receptor (TR), while BPA and BPS favored the interaction between PI3K and estrogen receptor (ER), resulting in abnormal PI3K signaling with consequent distinct angiogenic activity. BPA- and BPS-induced pro-angiogenic effects and TBBPS showed anti-angiogenic effects due to their distinct disruption on the TR/ER-PI3K pathway. Our work provided new evidence and mechanistic insight on the angiogenic activity of bisphenols and expanded the scope of endocrine disruptors with interference in vascular homeostasis.


Assuntos
Disruptores Endócrinos , Células Endoteliais , Animais , Humanos , Camundongos , Fosfatidilinositol 3-Quinases , Camundongos Endogâmicos C57BL , Receptores de Estrogênio , Compostos Benzidrílicos
4.
Environ Sci Technol ; 57(27): 9965-9974, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37384941

RESUMO

The benzotriazole UV stabilizer UV-328 is well known for its potent antioxidative properties; however, there are concerns about how it may affect signaling nodes and lead to negative consequences. This study identified the key signaling cascades involved in oxidative stress in zebrafish (Danio rerio) larvae and evaluated the cell cycle arrests and associated developmental alternations. Exposure to UV-328 at 0.25, 0.50, 1.00, 2.00, and 4.00 µg/L downregulated gene expression associated with oxidative stress (cat, gpx, gst, and sod) and apoptosis (caspase-3, caspase-6, caspase-8, and caspase-9) at 3 days postfertilization (dpf). The transcriptome aberration in zebrafish with disrupted p38 mitogen-activated protein kinase (MAPK) cascades was validated based on decreased mRNA expressions of p38 MAPK (0.36-fold), p53 (0.33-fold), and growth arrest and DNA damage-inducible protein 45 α (Gadd45a) (0.52-fold) after a 3- and 14-day exposure alongside a correspondingly decreased protein expression. The percentage of cells in the Gap 1 (G1) phase increased from 69.60% to a maximum of 77.07% (p < 0.05) in the 3 dpf embryos. UV-328 inhibited the p38 MAPK/p53/Gadd45a regulatory circuit but promoted G1 phase cell cycle arrest, abnormally accelerating the embryo hatching and heart rate. This study provided mechanistic insights that enrich the risk profiles of UV-328.


Assuntos
Peixe-Zebra , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ciclo Celular/fisiologia , Transdução de Sinais , Apoptose , Estresse Oxidativo
5.
Environ Sci Technol ; 56(24): 17880-17889, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36475377

RESUMO

Persistent, mobile, and toxic (PMT) substances and very persistent and very mobile (vPvM) substances can transport over long distances from various sources, increasing the public health risk. A rapid and high-throughput screening of PMT/vPvM substances is thus warranted to the risk prevention and mitigation measures. Herein, we construct a machine learning-based screening system integrated with five models for high-throughput classification of PMT/vPvM substances. The models are constructed with 44 971 substances by conventional learning, deep learning, and ensemble learning algorithms, among which, LightGBM and XGBoost outperform other algorithms with metrics exceeding 0.900. Good model interpretability is achieved through the number of free halogen atoms (fr_halogen) and the logarithm of partition coefficient (MolLogP) as the two most critical molecular descriptors representing the persistence and mobility of substances, respectively. Our screening system exhibits a great generalization capability with area under the receiver operating characteristic curve (AUROC) above 0.951 and is successfully applied to the persistent organic pollutants (POPs), prioritized PMT/vPvM substances, and pesticides. The screening system constructed in this study can serve as an efficient and reliable tool for high-throughput risk assessment and the prioritization of managing emerging contaminants.


Assuntos
Algoritmos , Aprendizado de Máquina
6.
Environ Sci Technol ; 56(18): 13254-13263, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36087060

RESUMO

2-Mercaptobenzothiazole (MBT) is an industrial chemical widely used for rubber products, corrosion inhibitors, and polymer materials with multiple environmental and exposure pathways. A growing body of evidence suggests its potential bladder cancer (BC) risk as a public health concern; however, the molecular mechanism remains poorly understood. Herein, we demonstrate the activation of the aryl hydrocarbon receptor (AhR) by MBT and reveal key events in carcinogenesis associated with BC. MBT alters conformational changes of AhR ligand binding domain (LBD) as revealed by 500 ns molecular dynamics simulations and activates AhR transcription with upregulation of AhR-target genes CYP1A1 and CYP1B1 to approximately 1.5-fold. MBT upregulates the expression of MMP1, the cancer cell metastasis biomarker, to 3.2-fold and promotes BC cell invasion through an AhR-mediated manner. MBT is further revealed to induce differentially expressed genes (DEGs) most enriched in cancer pathways by transcriptome profiling. The exposure of MBT at environmentally relevant concentrations induces BC risk via AhR signaling disruption, transcriptome aberration, and malignant cell metastasis. A machine learning-based model with an AUC value of 0.881 is constructed to successfully predict 31 MBT analogues. Overall, we provide molecular insight into the BC risk of MBT and develop an effective tool for rapid screening of AhR agonists.


Assuntos
Receptores de Hidrocarboneto Arílico , Neoplasias da Bexiga Urinária , Benzotiazóis , Biomarcadores , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Humanos , Ligantes , Aprendizado de Máquina , Metaloproteinase 1 da Matriz/metabolismo , Simulação de Dinâmica Molecular , Receptores de Hidrocarboneto Arílico/metabolismo , Borracha
7.
Environ Pollut ; 312: 120029, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36030957

RESUMO

Pollution caused by per- and polyfluoroalkyl substances (PFASs) has become a major global concern. The association between PFAS-induced hepatotoxicity and gut microbiota in amphibians, particularly at environmentally relevant concentrations, remains elusive. Herein we exposed male black-spotted frogs (Rana nigromaculata) to 1 and 10 µg/L waterborne perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) for 21 days; subsequently, liver histopathological, oxidative stress, molecular docking, gene/protein expression, and gut microbiome analyses were conducted. PFOS and 6:2 Cl-PFESA exposure enhanced serum alanine aminotransferase and aspartate aminotransferase activities, and markedly increased hepatic area of vacuoles and inflammatory cell infiltration, while PFOA exposure increased serum alanine aminotransferase but not aspartate aminotransferase activities and affected hepatic area of vacuoles and inflammatory cell infiltration to a lesser extent. All three PFASs elevated catalase, glutathione S-transferase, and glutathione peroxidase activities and glutathione and malondialdehyde contents in the liver, suggesting the induction of oxidative stress. Further, PFASs could bind to mitogen-activated protein kinases (p38, ERK, and JNK), upregulating not only their expression but also the expression of downstream oxidative stress-related genes and that of P-p38, P-ERK, and Nrf2 proteins. In addition, PFAS exposure significantly increased the relative abundance of Proteobacteria and Delftia and decreased that of Firmicutes and Dietzia, Mycoplasma, and Methylobacterium-Methylorubrum in the order of PFOS ≈ 6:2 Cl-PFESA > PFOA. Altogether, it appears that PFOS and 6:2 Cl-PFESA are more toxic than PFOA. Finally, microbiota function prediction, microbiota co-occurrence network, and correlation analysis between gut microbiota and liver indices suggested that PFAS-induced hepatotoxicity was associated with gut microbiota dysbiosis. Our data provide new insights into the role of gut microbiota in PFAS-induced hepatotoxicity in frogs.


Assuntos
Ácidos Alcanossulfônicos , Doença Hepática Induzida por Substâncias e Drogas , Fluorocarbonos , Microbioma Gastrointestinal , Alanina Transaminase , Ácidos Alcanossulfônicos/toxicidade , Animais , Caprilatos , Catalase , Éteres , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Glutationa , Glutationa Peroxidase , Glutationa Transferase , Masculino , Malondialdeído , Proteínas Quinases Ativadas por Mitógeno , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Ranidae
8.
Environ Pollut ; 297: 118791, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998893

RESUMO

Tetrabromobisphenol A (TBBPA), which is the most widely employed brominated flame retardant, and its alternative tetrachlorobisphenol A (TCBPA) are widely distributed in aquatic environments. In the present study, the hepatotoxicity induced by TBBPA and TCBPA was investigated in Rana nigromaculata, and the potential mechanisms were investigated with a particular focus on ROS (reactive oxygen species) -dependent mitochondria-mediated apoptosis. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L waterborne TBBPA and TCBPA for 14 days. The results showed that liver weight was significantly increased by 51.52%-98.99% in the 0.01, 0.1, and 1 mg/L TBBPA and TCBPA groups relative to the control. Histological examination revealed that the structure of the liver, to some extent, was influenced by TBBPA and TCBPA with nuclear shrinkage and mitochondrial swelling. Meanwhile, TBBPA and TCBPA have significantly increased the alanine transaminase level in serum and the content of ROS, while inhibiting the activity of superoxide dismutase in the liver. In addition, DNA fragments were observed in the TBBPA and TCBPA groups relative to the control. Expression of Cytochrome C was significantly increased by 1.13-, 1.38-, 1.60-, and 2.46-fold in 0.001, 0.01, 0.1, and 1 mg/L TBBPA, and by 1.26-, 1.51-, 2.14-, and 2.98- fold in 0.001, 0.01, 0.1, and 1 mg/L TCBPA, respectively, which indicated that TCBPA may be more toxic than TBBPA. Similarly, the ratio of Bax/Bcl-2 was increased in a dose-dependent manner. These results indicated that apoptosis in the ROS-dependent mitochondrial pathway mediates hepatotoxicity caused by TBBPA and TCBPA. The present study will facilitate an understanding of the toxicity mechanism of flame retardants.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Apoptose , Retardadores de Chama/toxicidade , Fígado , Mitocôndrias , Bifenil Polibromatos/toxicidade , Ranidae , Espécies Reativas de Oxigênio
9.
Fish Shellfish Immunol ; 113: 9-19, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33727078

RESUMO

Perfluorooctanoic acid (PFOA) is widely used in industrial production due to its stable chemical structure and hydrophobic and oleophobic characteristics. PFOA has been frequently detected in environmental media and organisms, leading to increased health risks. There is a lack of information about the immunotoxicity of aquatic organisms induced by PFOA, and the molecular mechanisms remain unclear. In this study, LC-MS analysis proved that PFOA can accumulate in the kidney of zebrafish. In the 0.05 mg/L PFOA treatment group, the accumulation of PFOA in the kidney after 21 days of exposure significantly increased by 79.89%, compared to 14 days of exposure. And a hydropic endoplasmic reticulum, swelling of mitochondria and vacuolization were observed in kidney immune cells of zebrafish. The Toll-like receptor 2 (TLR2)/myeloid differentiation factor 88 (myd88)/NF-κB (P65) pathway was activated when PFOA exerted its effects, which led to regulation of antibody expression; RT-PCR results showed that the mRNA expression level of interleukin-4 (IL-4) decreased in a dose-dependent manner, decreasing to 29.6% of the control level in the 1 mg/L PFOA group after 21 d of exposure. According to triangle plot analysis, immunoglobulin exhibited a notable stress response to PFOA at an early phase; a high concentration of PFOA may disrupt the immune system of zebrafish. Third-order polynomial fitting analysis showed that the high-mRNA-expression regions of IL-4 and antibodies were partially consistent. The results indicated that PFOA could affect antibodies by increasing the concentrations of proinflammatory cytokines. Changes in antibody levels further influenced the expression of other cytokines, which eventually caused disorders in the zebrafish immune system. This study expands the understanding of PFOA-induced immunosuppression and suggests that toxicity mechanisms should be considered for further health risk assessment of emerging pollutants.


Assuntos
Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Imunotoxinas/toxicidade , NF-kappa B/imunologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/imunologia , Animais , Rim/efeitos dos fármacos , Rim/imunologia , Transdução de Sinais/imunologia
10.
Chemosphere ; 261: 127715, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32717514

RESUMO

Advanced oxidation processes (AOPs) based on the activation of hydrogen peroxide (H2O2) and persulfate (PS) by minerals have received increasing interest for environmental remediation. Herein, H2O2 and PS activation systems employing goethite as a catalyst were discovered for the rapid degradation of BPA with the generation of reactive oxidation species (ROS) and for the reduction of total organic carbon (TOC) in aqueous solutions. The morphology of goethite were characterized by XRD, SEM, BET, TEM, etc. As a result, the oxidant efficiency of the goethite/H2O2 system (75.9%) was higher than that of the goethite/PS system (61.4%) after 240 min due to the restricted radical scavenging. According to the results of electron paramagnetic resonance (EPR) and radical quenching experiments, the main active ROS during the BPA degradation process were OH and SO4-. The two reaction systems were all pH-dependent that BPA can be effectively degraded in the goethite/PS system under acidic, neutral and weakly alkaline conditions, while the most inefficient degradation under alkaline conditions in the goethite/H2O2 system. Moreover, goethite showed good structural stability in the two systems. Several reaction products were detected using LC-MS, and the mechanisms for three systems were proposed. Density functional theory (DFT) was employed to study the conceivable degradation pathways of BPA in the two processes. This work reveals novel mechanistic insights regarding H2O2 and PS activation over goethite and implies the great potential application of the PS/mineral process in water and wastewater treatment.


Assuntos
Compostos Benzidrílicos/química , Fenóis/química , Poluentes Químicos da Água/química , Recuperação e Remediação Ambiental , Peróxido de Hidrogênio/química , Compostos de Ferro , Minerais , Oxidantes , Oxirredução , Sulfatos/química , Águas Residuárias , Poluentes Químicos da Água/análise
11.
Front Physiol ; 11: 316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351401

RESUMO

Hazardous anatoxin-a (ANTX-a) is produced by freshwater algal blooms worldwide, which greatly increases the risk of consumer exposure. Although ANTX-a shows widespread neurotoxicity in aquatic animals, little is known about its mechanism of action and biotransformation in biological systems, especially in immunobiological models. In this study, transmission electron microscopy results showed that ANTX-a can destroy lymphocytes of Carassius auratus in vitro by inducing cytoplasmic concentration, vacuolation, and swollen mitochondria. DNA fragmentations clearly showed a ladder pattern in agarose gel electrophoresis, which demonstrated that the apoptosis of fish lymphocytes was caused by exposure to ANTX-a. Flow cytometry results showed that the apoptotic percentage of fish lymphocytes exposed to 0.01, 0.1, 1, and 10 mg/L of ANTX-a for 12 h reached 18.89, 22.89, 39.23, and 35.58%, respectively. ANTX-a exposure induced a significant increase in reactive oxygen species (ROS) and malonaldehyde (MDA) in lymphocytes. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and the glutathione (GSH) content of the 0.01 mg/L ANTX-a-treated group decreased significantly by about 41, 46, 67, and 54% compared with that of the control group (p < 0.01), respectively. Although these observations were dose-dependent, these results suggested that ANTX-a can induce lymphocyte apoptosis via intracellular oxidative stress and destroy the antioxidant system after a short exposure time of only 12 h. Besides neurotoxicity, ANTX-a may also be toxic to the immune system of fish, even when the fish are exposed to environmentally relevant concentrations, which clearly demonstrated that the potential health risks induced by ANTX-a in aquatic organisms requires attention.

12.
Chemosphere ; 249: 126200, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32086066

RESUMO

Perfluorooctanoic acid (PFOA) has been identified as a new persistent organic pollutant. This pollutant is ubiquitous in water and environments. Although PFOA is toxic to fishes, the precise immunotoxicological mechanism remains unclear. In this study, HPLC-MS analysis proved that PFOA can accumulate in the spleen of zebrafish. As comparison of 7-day and 14-day data, the cumulative content in the spleen significantly increased by 26% even in the 0.1 mg/L PFOA-treated group. Morphological observations revealed that PFOA can damage immune cells in zebrafish spleen by inducing vacuolization, lipofuscin granule production, and mitochondrial swelling. The Toll-like receptor 2 (TLR2)/myeloid differentiation factor 88 (myd88)/NF-κB (P65) pathway can mediate the mRNA expression levels of interferon (IFN) and B cell-activating factor (BAFF); immunoglobulin (Ig) secretion is further regulated. RT-PCR results indicated that the expression levels of P65 and IFN in the 1 mg/L group after PFOA exposure for 7 d increased by 4.03- and 3.28-fold, respectively, in a dose-dependent manner compared with those of the control group. The linear correlation coefficient (r2) was analyzed, and the results indicated that the Ig-mediated pathway can be affected by PFOA. For example, the r2 between IgD and P65 decreased from 0.641 (7 d) to 0.295 (14 d) after the cells were exposed to PFOA for a prolonged time; the r2 between IgD and IFN increased from 0.562 (7 d) to 0.808 (14 d). The triangle plot method strongly demonstrated that increased PFOA concentration and prolonged exposure to PFOA can inhibit Ig secretion. Therefore, immune organs, particularly the spleen, of zebrafish are vulnerable to PFOA. These results can help to improve the understanding of the possible noncarcinogenic risk mechanisms induced by PFOA.


Assuntos
Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Baço/imunologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/imunologia , Animais , Poluentes Ambientais/metabolismo , Terapia de Imunossupressão , Baço/metabolismo , Receptor 2 Toll-Like , Fator de Transcrição RelA/metabolismo , Peixe-Zebra/metabolismo
13.
J Hazard Mater ; 384: 121255, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31590087

RESUMO

Polychlorinated dibenzo-p-dioxins (PCDDs), characterized by their high persistency and bioaccumulation, are widely detected in the environment. In this study, high-performance g-C3N4/NiO heterojunctions were fabricated to degrade 2-chlorodibenzo-p-dioxin (2-CDD) under ultraviolet-visible (UV-vis) light illumination. Experiments revealed that the pure g-C3N4 and range of g-C3N4/NiO heterojunctions were synthesized by the mixing and heating method, and then were characterized by XRD, TEM, XPS and PL etc. The composites exhibited enhanced dechlorination activities under anoxic conditions. After comparison, the g-C3N4/NiO (4:6) showed optimal dechlorination performance such that 70.4% of 2-CDD was removed within 8 h and 52.3% of 2-CDD was transformed to dibenzo-p-dioxin (DD), about fourfold higher than the pristine g-C3N4. The transformation of 2-CDD was accompanied by the resale of Cl ion, and the additional oxygen was proven to be able to consume electrons and hydrogen ions, thus greatly inhibiting the degradation of PCDD in systems. The g-C3N4/NiO (4:6) can be reused at least seven times, and the mechanism was proposed in detail to promote photoinduced electrohole separation and provide active sites. This study extends the use range of g-C3N4/NiO heterojunctions and develops a new technology to degrade PCDDs with striking activity and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...