Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(47): 54510-54519, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964472

RESUMO

Despite the numerous advantages of abundant zinc resources, low redox potential, and affordability, aqueous zinc-ion batteries (AZIBs) currently face limitations due to dendritic growth and side reactions. This study explores the use of low-cost and efficient anionic dyes, specifically Direct Red 80 (DR80) as dual-functional electrolyte additives to enhance the electrochemical performance of AZIBs and facilitate the reuse of dye wastewater. Experimental and theory calculation results all demonstrate that the DR80 molecules readily adsorb onto the surface of the zinc anode, creating a stable and robust solid electrolyte interphase layer. This layer acts as a protective barrier, effectively mitigating H+ attacks and reducing both hydrogen evolution and corrosion reactions. Additionally, it covers any initial protrusions on the zinc anode, preventing the occurrence of the "tip-effect" phenomenon and limiting access of water to the zinc anode, thereby minimizing water decomposition. Moreover, the sulfonic acid groups of DR80 molecules displace some water molecules in [Zn(H2O)6]2+, disrupting the original solvent sheath and reducing water decomposition. Especially, using the DR80 additive, the Zn/Zn cell reaches an impressive cycle life of 1500 h at 2 mA cm-2@1 mAh cm-2. Given the low cost and widespread availability, this additive shows great potential in the future practical implementation of AZIBs.

2.
ACS Appl Mater Interfaces ; 13(46): 55339-55348, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761896

RESUMO

Effective dye separation and desalination are critical for the treatment of highly saline textile wastewater with dye mixtures. In this study, a graphene oxide (GO) membrane with a tunable interlayer distance (d) was fabricated to generate clean water via two-stage filtration, namely, the dye/salt separation and desalination stages. In the first stage, under low pressure (e.g., 0.3 MPa), the membrane with a d value of ca. 7.60 Å was suitable for removing the dye from the saline wastewater. The dye and salt (i.e., Na2SO4) rejection rates of >99% and <6.5% were achieved, respectively, indicating the significant potential to recycle the dyes from the highly saline dye wastewater. In the second stage, under a higher pressure (e.g., 0.8 MPa), the d value was reduced to ca. 7.15 Å, bestowing the membrane with a desalination function. The desalination rate of a single filtration process could reach up to 51.8% from 1.0 g/L saline (i.e., Na2SO4) water. The as-prepared membrane also exhibited excellent practical advantages, including ultrahigh permeability, significant antifouling (against dye) performance, and excellent stability. Furthermore, with the stacking of multistage filtration systems, the proposed membrane technology will be capable of regenerating dye and producing clean water.

3.
ACS Appl Mater Interfaces ; 8(36): 23995-4007, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27537710

RESUMO

Combined with the features of electrospun nanofibers and the nature of hydrogel, a novel choreographed poly(acrylic acid)-silica hydrogel nanofibers (PAA-S HNFs) scaffold with excellent rare earth elements (REEs) recovery performance was fabricated by a facile route consisting of colloid-electrospinning of PAA/SiO2 precursor solution, moderate thermal cross-linking of PAA-S nanofiber matrix, and full swelling in water. The resultant PAA-S HNFs with a loose and spongy porous network structure exhibited a remarkable adsorption capacity of lanthanide ions (Ln(3+)) triggered by the penetration of Ln(3+) from the nanofiber surface to interior through the abundant water channels, which took full advantage of the internal adsorption sites of nanofibers. The effects of initial solution pH, concentration, and contact time on adsorption of Ln(3+) have been investigated comprehensively. The maximum equilibrium adsorption capacities for La(3+), Eu(3+), and Tb(3+) were 232.6, 268.8, and 250.0 mg/g, respectively, at pH 6, and the adsorption data were well-fitted to the Langmuir isotherm and pseudo-second-order models. The resultant PAA-S HNFs scaffolds could be regenerated successfully. Furthermore, the proposed adsorption mechanism of Ln(3+) on PAA-S HNFs scaffolds was the formation of bidentate carboxylates between carboxyl groups and Ln(3+) confirmed by FT-IR and XPS analysis. The well-designed PAA-S HNFs scaffold can be used as a promising alternative for effective REEs recovery. Moreover, benefiting from the unique features of Ln(3+), the Ln-PAA-S HNFs simultaneously exhibited versatile advantages including good photoluminescent performance, tunable emission color, and excellent flexibility and processability, which also hold great potential for applications in luminescent patterning, underwater fluorescent devices, sensors, and biomaterials, among others.

4.
J Nanosci Nanotechnol ; 16(1): 832-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27398532

RESUMO

Integrated electrospun nanofibrous membrane was prepared by creating soldered junctions between nanofibers via a facile strategy. Polyacrylonitrile (PAN) mixed with poly(vinylidene fluoride) (PVDF) at different ratios of PVDF were prepared in N,N'-dimethyl formamide (DMF), then electrospun to fabricate PAN/PVDF membranes. PVDF can form microgels in DMF which slows down volatile speed of DMF and affects the solidification of PAN/PVDF nanofibers. The resulting membranes were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic water contact angle and tensile testing to confirm the morphology and mechanical properties. Soldered junctions were observed between nanofibers with the increase of PVDF content. These junctions made the membrane integrated and greatly enhanced tensile strength from 5.1 to 8.1 MPa (increased by ~60%) and tensile modulus from 49.4 to 117.9 MPa (increased by ~139%) without compromising porosity when the content of PVDF increased from 0 to 60 wt%.


Assuntos
Resinas Acrílicas/química , Membranas Artificiais , Nanofibras/química , Polivinil/química
5.
J Nanosci Nanotechnol ; 15(7): 5004-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373068

RESUMO

Ag-coated polyacrylonitrile (PAN) nanofibers have been prepared by a novel, facile and green way that combined electrospinning technique and poly(dopamine)-assisted electroless plating method. Poly(dopamine) (PDOP) was formed by oxidation polymerization of dopamine on the surface of PAN nanofibers to promote the electroless plating of silver. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and energy dispersive X-ray spectroscopy (EDS) were used to characterize the morphology and structure of Ag/PDOP/PAN nanofibrous composite mem- brane and Ultraviolet-visible (UV-vis) Spectroscopy was used to investigate its catalytic performance. The results indicated that silver clusters composed of face-centred cubic crystal Ag with average crystallite size of about 18 nm were well distributed on the surface of dopamine-modified electrospun PAN nanofibers (PDOP/PAN). The prepared silver coated PDOP/PAN (Ag/PDOP/PAN) nanofibrous composite membrane exhibited an outstanding catalytic performance, and showed good reusabil- ity for completely degradating methylene blue (MB) dyes and reducing o-nitroaniline very quickly, respectively.

6.
J Hazard Mater ; 295: 161-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25897698

RESUMO

In this paper, highly porous polyacrylonitrile (PAN) nanofibrous membranes were successfully fabricated by wet-electrospinning technique from PAN and poly(vinyl pyrrolidone) (PVP) blended solution using hot water bath as extractor, and then aminated with diethylene triamine (DETA). The obtained aminated PAN (APAN) nanofibrous mats showed unique micro/nano structures and possessed extra high extraction capability for the removal of lead ions (Pb(2+)) from aqueous solution (maximum uptake capacity of Pb(2+) was up to 1520.0mg/g), and could maintain over 90% of its extraction capacity at the sixth cycle of extraction-dissociation. Interestingly, the hexagonal crystals of basic lead(II) carbonate (Pb3(CO3)2(OH)2) grown on micro/nano structured APAN nanofibers were observed when APAN membrane was immersed in Pb(II) ions aqueous solution. The results provided new insights for the removal of metal ions by metal crystal growth from wastewater with high recovery.


Assuntos
Resinas Acrílicas/química , Chumbo/isolamento & purificação , Membranas Artificiais , Nanofibras , Polivinil/química , Pirrolidinas/química , Cristalização , Poluentes Químicos da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...