Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4550, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296715

RESUMO

An innovative ultrafast time-resolution method based on a picosecond pulsed laser was employed to investigate the mode-I crack propagation characteristics of fractured rock. Its time resolution is as fast as the degree of 45 picoseconds. Then, a series of three-point compressive loading tests with this method were conducted on tuff semi-circular bend (SCB) specimens. Based on this method, we found that the mode-I fracture process of the tuff specimens were composed of repeated crack initiation, arrest, and re-initiation. In addition, the experimental results showed that the fracture rates of the tuff specimens in the initial 10 µs were 636 m/s, 663.9 m/s, and 578 m/s. In comparison, the fracture rates of the specimens were 11.19 m/s, 19.23 m/s, 26.79 m/s during the whole fracture process. As a typical heterogeneous material with primary defects, rock has different fracture toughness at different locations. Therefore, we proposed a new method for determining rock fracture toughness at multipoint during the crack propagation. This new method emphasizes the effect of fracture toughness on crack propagation, which enables to determine the fracture toughness at multipoint and is closer to the original definition of fracture toughness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...