Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409152, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923635

RESUMO

Na+/vacancy ordering in sodium-ion layered oxide cathodes is widely believed to deteriorate the structural stability and retard the Na+ diffusion kinetics, but its unexplored potential advantages remain elusive. Herein, we prepared a P2-Na0.8Cu0.22Li0.08Mn0.67O2 (NCLMO-12h) material featuring moderate Na+/vacancy and transition-metal (TM) honeycomb orderings. The appropriate Na+/vacancy ordering significantly enhances the operating voltage and the TM honeycomb ordering effectively strengthens the layered framework. Compared with the disordered material, the well-balanced dual-ordering NCLMO-12h cathode affords a boosted working voltage from 2.85 to 3.51 V, a remarkable ~20% enhancement in energy density, and a superior cycling stability (capacity retention of 86.5% after 500 cycles). The solid-solution reaction with a nearly "zero-strain" character, the charge compensation mechanisms, and the reversible inter-layer Li migration upon sodiation/desodiation are unraveled by systematic in-situ/ex-situ characterizations. This study breaks the stereotype surrounding Na+/vacancy ordering and provides a new avenue for developing high-energy and long-durability sodium layered oxide cathodes.

2.
J Am Chem Soc ; 145(41): 22708-22719, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37813829

RESUMO

Activating anionic redox chemistry in layered oxide cathodes is a paradigmatic approach to devise high-energy sodium-ion batteries. Unfortunately, excessive oxygen redox usually induces irreversible lattice oxygen loss and cation migration, resulting in rapid capacity and voltage fading and sluggish reaction kinetics. Herein, the reductive coupling mechanism (RCM) of uncommon electron transfer from oxygen to copper ions is unraveled in a novel P2-Na0.8Cu0.22Li0.08Mn0.67O2 cathode for boosting the reversibility and kinetics of anionic redox reactions. The resultant strong covalent Cu-(O-O) bonding can efficaciously suppress excessive oxygen oxidation and irreversible cation migration. Consequently, the P2-Na0.8Cu0.22Li0.08Mn0.67O2 cathode delivers a marvelous rate capability (134.1 and 63.2 mAh g-1 at 0.1C and 100C, respectively) and outstanding long-term cycling stability (82% capacity retention after 500 cycles at 10C). The intrinsic functioning mechanisms of RCM are fully understood through systematic in situ/ex situ characterizations and theoretical computations. This study opens a new avenue toward enhancing the stability and dynamics of oxygen redox chemistry.

3.
Angew Chem Int Ed Engl ; 62(15): e202219230, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36780319

RESUMO

Manganese-rich layered oxide cathodes of sodium-ion batteries (SIBs) are extremely promising for large-scale energy storage owing to their high capacities and cost effectiveness, while the Jahn-Teller (J-T) distortion and low operating potential of Mn redox largely hinder their practical applications. Herein, we reveal that annealing in argon rather than conventional air is a universal strategy to comprehensively upgrade the Na-storage performance of Mn-based oxide cathodes. Bulk oxygen vacancies are introduced via this method, leading to reduced Mn valence, lowered Mn 3d-orbital energy level, and formation of the new-concept Mn domains. As a result, the energy density of the model P2-Na0.75 Mg0.25 Mn0.75 O2 cathode increases by ≈50 % benefiting from the improved specific capacity and operating potential of Mn redox. The Mn domains can disrupt the cooperative J-T distortion, greatly promoting the cycling stability. This exciting finding opens a new avenue towards high-performance Mn-based oxide cathodes for SIBs.

4.
Angew Chem Int Ed Engl ; 61(50): e202211478, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36260436

RESUMO

Proton insertion chemistry in aqueous zinc-ion batteries (AZIBs) is becoming a research hotspot owing to its fast kinetics and additional capacities. However, H+ storage mechanism has not been deciphered in the popular MoS2 -based AZIBs. Herein, we innovatively prepared a MoS2 /poly(3,4-ethylenedioxythiophene) (MoS2 /PEDOT) hybrid, where the intercalated PEDOT not only increases the interlayer spacing (from 0.62 to 1.29 nm) and electronic conductivity of MoS2 , but also activates the proton insertion chemistry. Thus, highly efficient and reversible H+ /Zn2+ co-insertion/extraction behaviors are demonstrated for the first time in aqueous Zn-MoS2 batteries. More intriguingly, the co-inserted protons can act as lubricants to effectively shield the electrostatic interactions between MoS2 /PEDOT host and divalent Zn2+ , enabling the accelerated ion-diffusion kinetics and exceptional rate performance. This work proposes a new concept of "proton lubricant" driving Zn2+ transport and broadens the horizons of Zn-MoS2 batteries.

5.
Small ; 18(31): e2202879, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35808956

RESUMO

Na superionic conductor (NASICON)-type Na4 MnCr(PO4 )3 has attracted extensive attention among the phosphate sodium-storage cathodes due to its ultra-high energy density originating from three-electron reactions but it suffers from severe structural degradation upon repeated sodiation/desodiation processes. Herein, Mg is used for partial substitution of Mn in Na4 MnCr(PO4 )3 to alleviate Jahn-Teller distortions and to prolong the cathode cycling life by virtue of the pinning effect induced by implanting inert MgO6 octahedra into the NASICON framework. The as-prepared Na4 Mn0.9 CrMg0.1 (PO4 )3 /C cathode delivers high capacity retention of 92.7% after 500 cycles at 5 C and fascinating rate capability of 154.6 and 70.4 mAh g-1 at 0.1 and 15 C, respectively. Meanwhile, it can provide an admirable energy density of ≈558.48 Wh kg-1 based on ≈2.8-electron reactions of Mn2+ /Mn3+ , Mn3+ /Mn4+ , and Cr3+ /Cr4+ redox couples. In situ X-ray diffraction reveals the highly reversible single-phase and bi-phase structural evolution of such cathode materials with a volume change of only 6.3% during the whole electrochemical reaction. The galvanostatic intermittent titration technique and density functional theory computations jointly demonstrate the superior electrode process kinetics and enhanced electronic conductivity after Mg doping. This work offers a new route to improve the cycling stability of the high-energy NASICON-cathodes for sodium-ion batteries.

6.
Angew Chem Int Ed Engl ; 60(37): 20286-20293, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34240536

RESUMO

Aqueous Zn-storage behaviors of MoS2 -based cathodes mainly rely on the ion-(de)intercalation at edge sites but are limited by the inactive basal plane. Herein, an in-situ molecular engineering strategy in terms of structure defects manufacturing and O-doping is proposed for MoS2 (designated as D-MoS2 -O) to unlock the inert basal plane, expand the interlayer spacing (from 6.2 to 9.6 Å), and produce abundant 1T-phase. The tailored D-MoS2 -O with excellent hydrophilicity and high conductivity allows the 3D Zn2+ transport along both the ab plane and c-axis, thus achieving the exceptional high rate capability. Zn2+ diffusion through the basal plane is verified by DFT computations. As a proof of concept, the wearable quasi-solid-state rechargeable Zn battery employing the D-MoS2 -O cathode operates stably even under severe bending conditions, showing great application prospects. This work opens a new window for designing high-performance layered cathode materials for aqueous Zn-ion batteries.

7.
Adv Mater ; 33(12): e2007480, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33598960

RESUMO

Layered materials have great potential as cathodes for aqueous zinc-ion batteries (AZIBs) because of their facile 2D Zn2+ transport channels; however, either low capacity or poor cycling stability limits their practical applications. Herein, two classical layered materials are innovatively combined by intercalating graphene into MoS2 gallery, which results in significantly enlarged MoS2 interlayers (from 0.62 to 1.16 nm) and enhanced hydrophilicity. The sandwich-structured MoS2 /graphene nanosheets self-assemble into a flower-like architecture that facilitates Zn-ion diffusion, promotes electrolyte infiltration, and ensures high structural stability. Therefore, this novel MoS2 /graphene nanocomposite exhibits exceptional high-rate capability (285.4 mA h g-1 at 0.05 A g-1 with 141.6 mA h g-1 at 5 A g-1 ) and long-term cycling stability (88.2% capacity retention after 1800 cycles). The superior Zn2+ migration kinetics and desirable pseudocapacitive behaviors are confirmed by electrochemical measurements and density functional theory computations. The energy storage mechanism regarding the highly reversible phase transition between 2H- and 1T-MoS2 upon Zn-ion insertion/extraction is elucidated through ex situ investigations. As a proof of concept, a flexible quasi-solid-state zinc-ion battery employing the MoS2 /graphene cathode demonstrates great stability under different bending conditions. This study paves a new direction for the design and on-going development of 2D materials as high-performance cathodes for AZIBs.

8.
Adv Sci (Weinh) ; 7(21): 2002199, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33173742

RESUMO

Iron/manganese-based layered transition metal oxides have risen to prominence as prospective cathodes for sodium-ion batteries (SIBs) owing to their abundant resources and high theoretical specific capacities, yet they still suffer from rapid capacity fading. Herein, a dual-strategy is developed to boost the Na-storage performance of the Fe/Mn-based layered oxide cathode by copper (Cu) doping and nanoengineering. The P2-Na0.76Cu0.22Fe0.30Mn0.48O2 cathode material synthesized by electrospinning exhibits the pearl necklace-like hierarchical nanostructures assembled by nanograins with sizes of 50-150 nm. The synergistic effects of Cu doping and nanotechnology enable high Na+ coefficients and low ionic migration energy barrier, as well as highly reversible structure evolution and Cu/Fe/Mn valence variation upon repeated sodium insertion/extraction; thus, the P2-Na0.76Cu0.22Fe0.30Mn0.48O2 nano-necklaces yield fabulous rate capability (125.4 mA h g-1 at 0.1 C with 56.5 mA h g-1 at 20 C) and excellent cyclic stability (≈79% capacity retention after 300 cycles). Additionally, a promising energy density of 177.4 Wh kg-1 is demonstrated in a prototype soft-package Na-ion full battery constructed by the tailored nano-necklaces cathode and hard carbon anode. This work symbolizes a step forward in the development of Fe/Mn-based layered oxides as high-performance cathodes for SIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...