Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400439, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864536

RESUMO

Optical encryption technologies based on persistent luminescence material have currently drawn increasing attention due to the distinctive and long-lived optical properties, which enable multi-dimensional and dynamic optical information encryption to improve the security level. However, the controlled synthesis of persistent phosphors remains largely unexplored and it is still a great challenge to regulate the structure for optical properties optimization, which inevitably sets significant limitations on the practical application of persistent luminescent materials. Herein, a controlled synthesis method is proposed based on defect structure regulation and a series of porous persistent phosphors is obtained with different luminous intensities, lifetime, and wavelengths. By simply using diverse templates during the sol-gel process, the oxygen vacancy defects structures are successfully regulated to improve the optical properties. Additionally, the obtained series of porous Al2O3 are utilized for multi-color and dynamic optical information encryption to increase the security level. Overall, the proposed defect regulation strategy in this work is expected to provide a general and facile method for optimizing the optical properties of persistent luminescent materials, paving new ways for broadening their applications in multi-dimensional and dynamic information encryption.

2.
Angew Chem Int Ed Engl ; 63(24): e202404060, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588061

RESUMO

Multi-dimensional force sensing that combines intensity, location, area and the like could gather a wealth of information from mechanical stimuli. Developing materials with force-induced optical and electrical dual responses would provide unique opportunities to multi-dimensional force sensing, with electrical signals quantifying the force amplitude and the luminescence output providing spatial distribution of force. However, the reliance on external power supply and high-energy excitation source brings significant challenges to the applicability of multi-dimensional force sensors. Here we reported the mechanical energy-driven and sunlight-activated materials with force-induced dual responses, and investigated the underlying mechanisms of self-sustainable force sensing. Theoretical analysis and experimental data unraveled that trap-controlled luminescence and interfacial electron transfer play a major role in force-induced optical and electrical output. These materials were manufactured into pressure sensor with renewable dual-mode output for quantifying and visualization of pressures by electrical and optical output, respectively, without power supply and high-energy irradiation. The quantification of tactile sensation and stimuli localization of mice highlighted the multi-dimensional sensing ability of the sensor. Overall, this self-powered pressure sensor with multimodal output provides more modalities of force sensing, poised to change the way that intelligent devices sense with the world.

3.
Nat Commun ; 14(1): 6800, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884498

RESUMO

Microbial communication can drive coordinated functions through sensing, analyzing and processing signal information, playing critical roles in biomanufacturing and life evolution. However, it is still a great challenge to develop effective methods to construct a microbial communication system with coordinated behaviors. Here, we report an electron transfer triggered redox communication network consisting of three building blocks including signal router, optical verifier and bio-actuator for microbial metabolism regulation and coordination. In the redox communication network, the Fe3+/Fe2+ redox signal can be dynamically and reversibly transduced, channeling electrons directly and specifically into bio-actuator cells through iron oxidation pathway. The redox communication network drives gene expression of electron transfer proteins and simultaneously facilitates the critical reducing power regeneration in the bio-actuator, thus enabling regulation of microbial metabolism. In this way, the redox communication system efficiently promotes the biomanufacturing yield and CO2 fixation rate of bio-actuator. Furthermore, the results demonstrate that this redox communication strategy is applicable both in co-culture and microbial consortia. The proposed electron transfer triggered redox communication strategy in this work could provide an approach for reducing power regeneration and metabolic optimization and could offer insights into improving biomanufacturing efficiency.


Assuntos
Ferro , Consórcios Microbianos , Biocatálise , Oxirredução , Transporte de Elétrons
4.
Angew Chem Int Ed Engl ; 60(32): 17564-17569, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34050591

RESUMO

Facet-selective nanostructures in living systems usually exhibit outstanding optical and enzymatic properties, playing important roles in photonics, matter exchange, and biocatalysis. Bioinspired construction of facet-selective nanostructures offers great opportunities for sophisticated nanomaterials, but remains a formidable task. We have developed a macromolecule-mediated strategy for the assembly of upconversion nanoparticles (UCNPs)/two-dimensional metal-organic frameworks (2DMOFs) heterostructures with facet selectivity. Both experimental and theoretical results demonstrate that polyvinylpyrrolidone (PVP) can be utilized as an interface-selective mediator to further promote the facet-selective assembly of MOFs onto the surface of UCNPs. The UCNPs/2DMOFs nanostructures with facet selectivity display specific optical properties and show great advantages in anti-counterfeiting. Our demonstration of UCNPs/2DMOFs provides a vivid example for the controlled fabrication of facet-selective nanostructures and can promote the development of advanced functional materials for applications in biosensing, energy conversion, and information assurance.

5.
Small ; 17(24): e2100562, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33969623

RESUMO

Many substances in nature show radiated topological structure and possess excellent bio-adhesion ability. Herein, regulating the topological structure of Zn2 GeO4 :Mn persistent phosphors is achieved with a molecular coordination method. The morphology of the Zn2 GeO4 :Mn phosphors is well-tuned from nanorods to radiated dendrites by changing the coordination capability of the surface ligand. Due to the structural matching and multivalent interactions, Zn2 GeO4 :Mn radiated dendrites show strong adhesion affinity toward organisms. Moreover, the porous radiated structure offers Zn2 GeO4 :Mn with a large surface area for photocatalysis. Efficient bacterial adhesion and good long persistent photocatalysis activity are observed in the Zn2 GeO4 :Mn radiated dendrites, which endows Zn2 GeO4 :Mn with persistent antibacterial activity even in the dark. Further, the Zn2 GeO4 :Mn spike flowers loaded fabrics exhibit potent persistent antibacterial properties. Mask and towel fabricated with the antibacterial fabrics can inhibit bacterial growth effectively and no bacteria are observed to pass through the antibacterial mask, suggesting that antibacterial mask can guarantee our health and can be utilized repeatedly. The developed Zn2 GeO4 :Mn dendrites possess ideal ability in long-term bacterial inhibition, making them valuable in the fields of medical protection and food packaging.


Assuntos
Aderência Bacteriana , Nanotubos , Antibacterianos/farmacologia , Dendritos
6.
Nano Lett ; 21(7): 2854-2860, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33769062

RESUMO

Urinary tract infections (UTIs) caused by bacterial invasion can lead to life-threatening complications, posing a significant health threat to more than 150 million people worldwide. As a result, there is need for accurate and rapid diagnosis of UTIs to enable more effective treatment. Described here is an intelligent diagnostic system constructed for bacterial detection using an immunobiosensor, signal-amplification biochip, and image processing algorithm based on machine vision. This prototype can quickly detect bacteria by collection of enhanced luminescence enabled by the photonic crystals integrated into the biochip. By use of a machine vision algorithm, the very small luminescence signals are analyzed to provide a low detection limit and wide dynamic range. This sensor system can offer an affordable, accessible, and user-friendly digital diagnostic solution, possibly suitable for wearable technology, that could improve treatment of this challenging disease.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Infecções Urinárias , Humanos , Luminescência , Óptica e Fotônica , Infecções Urinárias/diagnóstico
7.
ACS Appl Bio Mater ; 3(5): 2816-2826, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35025411

RESUMO

Recently, nucleic acid aptamers have been widely used in biological analysis due to their high affinity, binding selectivity, and programmability. Researchers have introduced the idea that chemical modification endows aptamers with rich spatial conformations and functions, extending the application of aptamers in biological analysis. Currently, reviews about aptamers in the bioanalytical field usually focus on the complexes of aptamers and functional materials. Few reviews pay attention to the chemically modified aptamers. In this review, we introduce the synthesis and screening of chemically modified nucleic acids. In addition, we summarize the recent works about chemically modified aptamers in the field of bioanalysis, aiming to provide a promising step toward an aptamer-based versatile platform for biological analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...