Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401307, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801308

RESUMO

With the guidance of density functional theory (DFT), a high-performance hafnium (Hf) cathode for an air/water vapor plasma torch is designed and the concepts and principles for high performance are elucidated. A quasi-nanocrystalline hexagonal close-packed (HCP) Hf-La2O3 cathode based on these design principles is successfully fabricated via a powder metallurgy route. Under identical voltage and temperature conditions, the thermal emission current density of this quasi-nanocrystalline Hf-La2O3 cathode is ≈20 times greater than that of conventional Hf cathodes. Additionally, its cathodic lifespan is significantly extended. Quasi-nanocrystalline Hf-La2O3 products are manufactured into cathode devices with standard dimensions. This fabrication process is straightforward, requires minimal doped oxides, and is cost-effective. Consequently, the approach offers substantial performance enhancements over traditional Hf melting methods without incurring significantly additional costs.

2.
ACS Omega ; 9(3): 3950-3961, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284093

RESUMO

Since the diffusion coefficient is a key parameter to characterize the diffusion rate of methane molecules, its measurement and solution have always been a research hotspot. The diffusion coefficient is normally solved through analytical solutions of theoretical models, which is complex and poorly applicable. In comparison, the numerical simulation optimization method can seek a solution easily and quickly, providing a clue for solving such problem. In this paper, first, gas desorption experiments were conducted on coal samples with different initial gas equilibrium pressures, coal particle sizes, and metamorphic degrees. Combined with existing theoretical models, the numerical simulation optimization method was adopted to solve the diffusion coefficient of the coal particle. Furthermore, the applicability and advantages of the numerical simulation optimization method were discussed. Finally, the variation law of the diffusion coefficients was analyzed. The results demonstrate that the numerical simulation optimization method can not only solve the diffusion coefficient easily and quickly but also reveal the law of diffusion concentration with time. The d values between the solution results and the experimental data under different conditions are all smaller than 0.2, which proves the effectiveness and accuracy of the simulation optimization method. The diffusion coefficient of gas from coal particles is unrelated to the initial gas equilibrium pressure, yet it has a Z-shaped relationship with the coal particle size and a V-shaped relationship with the metamorphic degree.

3.
Materials (Basel) ; 16(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37444926

RESUMO

Tungsten (W), as a promising plasma-facing material for fusion nuclear reactors, exhibits ductility reduction. Introducing high-density coherent nano-dispersoids into the W matrix is a highly efficient strategy to break the tradeoff of the strength-ductility performance. In this work, we performed helium (He) ion irradiation on coherent oxide-dispersoids strengthened (ODS) W to investigate the effect of coherent nanoparticle interfaces on the behavior of He bubbles. The results show that the diameter and density of He bubbles in ODS W are close to that in W at low dose of He ion irradiation. The radiation-induced hardening increment of ODS W, being 25% lower than that of pure W, suggests the involvement of the coherent interface in weakening He ion irradiation-induced hardening and emphasizes the potential of coherent nano-dispersoids in enhancing the radiation resistance of W-based materials.

4.
Materials (Basel) ; 16(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297056

RESUMO

The AISI 316L austenitic stainless steel fabricated by selective laser melting (SLM) is considered to have great prospects for applications in nuclear systems. This study investigated the He-irradiation response of SLM 316L, and several possible reasons for the improved He-irradiation resistance of SLM 316L were systematically revealed and evaluated by using TEM and related techniques. The results show that the effects of unique sub-grain boundaries have primary contributions to the decreased bubble diameter in SLM 316L compared to that in the conventional 316L counterpart, while the effects of oxide particles on bubble growth are not the dominant factor in this study. Moreover, the He densities inside the bubbles were carefully measured using electron energy loss spectroscopy (EELS). The mechanism of stress-dominated He densities in bubbles was validated, and the corresponding reasons for the decrease in bubble diameter were freshly proposed in SLM 316L. These insights help to shed light on the evolution of He bubbles and contribute to the ongoing development of the steels fabricated by SLM for advanced nuclear applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...