Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 136454, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389508

RESUMO

Wide used guided bone regeneration (GBR) membrane materials, such as collagen, Teflon, and other synthesized polymers, present a great challenge in term of integrating the mechanical property and degradation rate when addressing critical bone defects. Therefore, inspired by the distinctive architecture of fish scales, this study utilized epigallocatechin gallate to modify decellularized fish scales following biomimetic mineralization to fabricate a GBR membrane that mimics the structure of lamellar bone. The structure, physical and chemical properties, and biological functions of the novel GBR membrane were evaluated. Results indicate that the decellularized fish scale with 5 remineralization cycles (5R-E-DCFS) exhibited a composite and structure similar to natural bone and had a special functionally gradient mineral contents character, demonstrating excellent mechanical properties, hydrophilicity, and degradation properties. In vitro, the 5R-E-DCFS membrane exhibited excellent cytocompatibility promoting Sprague-Dawley (SD) rat bone marrow mesenchymal stem cell proliferation and differentiation up-regulating the expression of osteogenic-related genes and proteins. Furthermore, in vivo, the 5R-E-DCFS membrane promoted the critical skull bone defects of SD rats repairment and regeneration. Therefore, this innovative biomimetic membrane holds substantial clinical potential as an ideal GBR membrane with mechanical properties for space-making and suitable degradation rate for bone regeneration to manage bone defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA