Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 689: 1276-1292, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31466165

RESUMO

A spatially distributed network of thermokarst lakes undergoing significant environmental changes was sampled in 2014 and 2016 to develop a comprehensive understanding of lake water balances in lakes across a gradient of frozen ground conditions. Frozen ground ranges from seasonally frozen ground (SFG) to sporadic discontinuous permafrost (SDP) to extensive discontinuous permafrost (EDP), and is representative of complex conditions in the Source Area of the Yellow River, northeastern part of Qinghai-Tibet Plateau. Radioactive and stable water isotopes in reference lakes (non-thaw lakes), thermokarst lakes, precipitation, wetlands, ground ice and supra-permafrost groundwater are analyzed to characterize systematic variations and to assess lake water balances using stable isotope mass balance (IMB). IMB, paired with analysis of tritium decay gradients, is shown to be a valid approach for detecting short-term shifts in lake water balance, which allows evaluation of the proportion of precipitation-derived versus permafrost-derived water inputs to lakes. All lakes except EDP thaw lakes are evaporation-dominated (E/I > 0.5). Negative water balances occurred most frequently in reference lakes due to hydrological connectivity with rivers. Precipitation-derived water inputs result in positive water balances in SFG and SDP thermokarst lakes, but negative-trending water balances are found in SDP thermokarst lakes due to substantial reduction in water yield. Increasing contributions from thawing permafrost in EDP thermokarst lakes result in strong positive water balance. Permafrost degradation may also lead to the changes in hydrological connectivity between precipitation and wetlands or thermokarst lakes. Based on these findings, a conceptual model of the hydrological evolution of thermokarst lakes under the influence of permafrost degradation is proposed.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31976001

RESUMO

OBJECTIVE: Ulcerative colitis (UC) is a chronic idiopathic inflammatory bowel disease whose treatment strategies remain unsatisfactory. This study aims to investigate the mechanisms of Quyushengxin formula acting on UC based on network pharmacology. METHODS: Ingredients of the main herbs in Quyushengxin formula were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Absorption, distribution, metabolism, and excretion properties of all ingredients were evaluated for screening out candidate bioactive compounds in Quyushengxin formula. Weighted ensemble similarity algorithm was applied for predicting direct targets of bioactive ingredients. Functional enrichment analyses were performed for the targets. In addition, compound-target network, target-disease network, and target-pathway network were established via Cytoscape 3.6.0 software. RESULTS: A total of 41 bioactive compounds in Quyushengxin formula were selected out from the TCMSP database. These bioactive compounds were predicted to target 94 potential proteins by weighted ensemble similarity algorithm. Functional analysis suggested these targets were closely related with inflammatory- and immune-related biological progresses. Furthermore, the results of compound-target network, target-disease network, and target-pathway network indicated that the therapeutic effects of Quyushengxin on UC may be achieved through the synergistic and additive effects. CONCLUSION: Quyushengxin may act on immune and inflammation-related targets to suppress UC progression in a synergistic and additive manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...