Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(746): eadk4728, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718131

RESUMO

Group 2 innate lymphoid cells (ILC2s) rapidly induce a type 2 inflammation in the lungs in response to allergens. Here, we focused on the role of iron, a critical nutritional trace element, on ILC2 function and asthma pathogenesis. We found that transferrin receptor 1 (TfR1) is rapidly up-regulated and functional during ILC2 activation in the lungs, and blocking transferrin uptake reduces ILC2 expansion and activation. Iron deprivation reprogrammed ILC2 metabolism, inducing a HIF-1α-driven up-regulation of glycolysis and inhibition of oxidative mitochondrial activity. Consequently, we observed that in vivo iron chelation or induction of hypoferremia reduced the development of airway hyperreactivity in experimental models of ILC2-driven allergic asthma. Human circulating ILC2s rapidly induced TfR1 during activation, whereas inhibition of iron uptake or iron deprivation reduced effector functions. Last, we found a negative relationship between circulating ILC2 TfR1 expression and airway function in cohorts of patients with asthma. Collectively, our studies define cellular iron as a critical regulator of ILC2 function.


Assuntos
Asma , Ferro , Linfócitos , Receptores da Transferrina , Receptores da Transferrina/metabolismo , Ferro/metabolismo , Animais , Linfócitos/metabolismo , Humanos , Asma/imunologia , Asma/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Imunidade Inata , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
2.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38530239

RESUMO

Mechanosensitive ion channels sense force and pressure in immune cells to drive the inflammatory response in highly mechanical organs. Here, we report that Piezo1 channels repress group 2 innate lymphoid cell (ILC2)-driven type 2 inflammation in the lungs. Piezo1 is induced on lung ILC2s upon activation, as genetic ablation of Piezo1 in ILC2s increases their function and exacerbates the development of airway hyperreactivity (AHR). Conversely, Piezo1 agonist Yoda1 reduces ILC2-driven lung inflammation. Mechanistically, Yoda1 inhibits ILC2 cytokine secretion and proliferation in a KLF2-dependent manner, as we found that Piezo1 engagement reduces ILC2 oxidative metabolism. Consequently, in vivo Yoda1 treatment reduces the development of AHR in experimental models of ILC2-driven allergic asthma. Human-circulating ILC2s express and induce Piezo1 upon activation, as Yoda1 treatment of humanized mice reduces human ILC2-driven AHR. Our studies define Piezo1 as a critical regulator of ILC2s, and we propose the potential of Piezo1 activation as a novel therapeutic approach for the treatment of ILC2-driven allergic asthma.


Assuntos
Asma , Imunidade Inata , Humanos , Animais , Camundongos , Linfócitos , Inflamação , Canais Iônicos/genética
3.
J Allergy Clin Immunol ; 153(5): 1406-1422.e6, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244725

RESUMO

BACKGROUND: Type 2 innate lymphoid cells (ILC2s) play a pivotal role in type 2 asthma. CD226 is a costimulatory molecule involved in various inflammatory diseases. OBJECTIVE: We aimed to investigate CD226 expression and function within human and mouse ILC2s, and to assess the impact of targeting CD226 on ILC2-mediated airway hyperreactivity (AHR). METHODS: We administered IL-33 intranasally to wild-type mice, followed by treatment with anti-CD226 antibody or isotype control. Pulmonary ILC2s were sorted for ex vivo analyses through RNA sequencing and flow cytometry. Next, we evaluated the effects of CD226 on AHR and lung inflammation in wild-type and Rag2-/- mice. Additionally, we compared peripheral ILC2s from healthy donors and asthmatic patients to ascertain the role of CD226 in human ILC2s. RESULTS: Our findings demonstrated an inducible expression of CD226 in activated ILC2s, enhancing their cytokine secretion and effector functions. Mechanistically, CD226 alters intracellular metabolism and enhances PI3K/AKT and MAPK signal pathways. Blocking CD226 ameliorates ILC2-dependent AHR in IL-33 and Alternaria alternata-induced models. Interestingly, CD226 is expressed and inducible in human ILC2s, and its blocking reduces cytokine production. Finally, we showed that peripheral ILC2s in asthmatic patients exhibited elevated CD226 expression compared to healthy controls. CONCLUSION: Our findings underscore the potential of CD226 as a novel therapeutic target in ILC2s, presenting a promising avenue for ameliorating AHR and allergic asthma.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Asma , Imunidade Inata , Linfócitos , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Asma/imunologia , Interleucina-33/imunologia , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Mucosal Immunol ; 16(6): 788-800, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37634572

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious health problems that manifest as acute respiratory failure in response to different conditions, including viral respiratory infections. Recently, the inhibitory properties of leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) were demonstrated in allergic and viral airway inflammation. In this study, we investigate the implication of LAIR-1 in ALI/ARDS and explore the underlying mechanisms. Polyinosinic:polycytidylic acid, a synthetic analog of double-stranded RNA, was used to mimic acute inflammation in viral infections. We demonstrate that LAIR-1 is predominantly expressed on macrophages and regulates their recruitment to the lungs as well as their activation in response to polyinosinic:polycytidylic acid. Interestingly, LAIR-1 deficiency increases neutrophil recruitment as well as lung resistance and permeability. In particular, we highlight the capacity of LAIR-1 to regulate the secretion of CXCL10, considered a key marker of macrophage overactivation in acute lung inflammation. We also reveal in COVID-19-induced lung inflammation that LAIR1 is upregulated on lung macrophages in correlation with relevant immune regulatory genes. Altogether, our findings demonstrate the implication of LAIR-1 in the pathogenesis of ALI/ARDS by means of the regulation of macrophages, thereby providing the basis of a novel therapeutic target.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Síndrome do Desconforto Respiratório , Humanos , Ativação de Macrófagos , Pulmão , Inflamação/patologia , Poli C
5.
J Clin Endocrinol Metab ; 107(2): 379-397, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34467411

RESUMO

CONTEXT: The identification and biological actions of pituitary-derived exosomes remain elusive. OBJECTIVE: This work aimed to validate production of exosomes derived from human and rat pituitary and elucidate their actions. METHODS: Isolated extracellular vesicles (EVs) were analyzed by Nanoparticle Tracking Analysis (NTA) and expressed exosomal markers detected by Western blot, using nonpituitary fibroblast FR and myoblast H9C2 cells as controls. Exosome inhibitor GW4869 was employed to detect attenuated EV release. Exosomal RNA contents were characterized by RNA sequencing. In vitro and in vivo hepatocyte signaling alterations responding to GH1-derived exosomes (GH1-exo) were delineated by mRNA sequencing. GH1-exo actions on protein synthesis, cAMP (3',5'-cyclic adenosine 5'-monophosphate) response, cell motility, and metastases were assessed. RESULTS: NTA, exosomal marker detection, and GW4869 attenuated EV release, confirming the exosomal identity of pituitary EVs. Hydrocortisone increased exosome secretion in GH1 and GH3 cells, suggesting a stress-associated response. Exosomal RNA contents showed profiles distinct for pituitary cells, and rat primary hepatocytes exposed to GH1-exo exhibited transcriptomic alterations distinct from those elicited by growth hormone or prolactin. Intravenous GH1-exo injection into rats attenuated hepatic Eif2ak2 and Atf4 mRNA expression, both involved in cAMP responses and amino acid biosynthesis. GH1-exo suppressed protein synthesis and forskolin-induced cAMP levels in hepatocytes. GH1-exo-treated HCT116 cells showed dysregulated p53 and mitogen-activated protein kinase (MAPK) pathways and attenuated motility of malignant HCT116 cells, and decreased tumor metastases in nude mice harboring splenic HCT116 implants. CONCLUSION: Our findings elucidate biological actions of somatotroph-derived exosomes and implicate exosomes as nonhormonal pituitary-derived messengers.


Assuntos
Adenoma/patologia , Exossomos/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Hipófise/metabolismo , Adenoma/metabolismo , Adulto , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Comunicação Celular , Técnicas de Cocultura , Feminino , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Hepatócitos , Humanos , Masculino , Hipófise/citologia , Hipófise/patologia , Cultura Primária de Células , Ratos , Ratos Wistar , Células Tumorais Cultivadas
6.
Pituitary ; 24(3): 312-325, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33205234

RESUMO

PURPOSE: Genetic and epigenetic alterations are involved in pituitary adenoma pathogenesis, however the molecular basis of proliferative nonfunctioning pituitary adenomas (NFPAs) remains unclear. Here, we analyzed integrated multi-omics profiling including copy number variation (CNV), DNA methylation and gene expression of 8 NFPAs. METHODS: We collected 4 highly proliferative (hpNFPA, Ki-67 ≥ 3) and 4 lowly proliferative (Ki-67 ≤ 1) NFPAs, and comprehensively assessed CNV, DNA methylation, and gene expression by Illumina HumanMethylation450 BeadChip and Affymetrix GeneChip PrimeView Human Gene Expression Array. We performed Ingenuity Pathway Analysis (IPA) for differentially expressed genes to illustrate aberrant pathways and delineated protein-protein networks of selected key genes in dysregulated pathways. RESULTS: Aberrant arm level CNV, dysregulated DNA methylation, and associated impacts on gene expressions were observed in 2 early occurring hpNFPAs. Chromosomal losses were associated with attenuated expression of DNA methyltransferases, further altering global methylation in these 2 samples. Correlation analysis between DNA methylation and gene expression in 8 NFPAs indicates methylation in promoter and gene body regions are both involved in gene regulation. IPA showed PPARα/RXRα, dopamine receptor signaling, cAMP-mediated signaling, and calcium signaling were all activated, while p38 MAPK and ERK5 signaling were inhibited in hpNFPAs. Moreover, selected key gene networks in hpNFPAs exhibited concurrent methylation status and expression levels of adenylate cyclase genes, G protein subunits, HLA genes, CXCL12, and CCL2. CONCLUSION: This study presents comprehensive multi-omics views of CNV, DNA methylation, and gene expression in 8 NFPAs. Pathway analysis and network maps of key genes provide clues to elucidate the molecular basis of hpNFPA.


Assuntos
Adenoma , Neoplasias Hipofisárias , Adenoma/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Perfilação da Expressão Gênica , Humanos , Antígeno Ki-67 , Neoplasias Hipofisárias/genética , Proteômica
7.
Sci Transl Med ; 5(173): 173ra24, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23427244

RESUMO

Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.


Assuntos
Encéfalo/embriologia , Encéfalo/fisiologia , Vias Neurais , Feminino , Humanos , Imageamento por Ressonância Magnética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...