Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731820

RESUMO

A significant number of patients with genetic epilepsy do not obtain seizure freedom, despite developments in new antiseizure drugs, suggesting a need for novel therapeutic approaches. Many genetic epilepsies are associated with misfolded mutant proteins, including GABRG2(Q390X)-associated Dravet syndrome, which we have previously shown to result in intracellular accumulation of mutant GABAA receptor γ2(Q390X) subunit protein. Thus, a potentially promising therapeutic approach is modulation of proteostasis, such as increasing endoplasmic reticulum (ER)-associated degradation (ERAD). To that end, we have here identified an ERAD-associated E3 ubiquitin ligase, HRD1, among other ubiquitin ligases, as a strong modulator of wildtype and mutant γ2 subunit expression. Overexpressing HRD1 or knockdown of HRD1 dose-dependently reduced the γ2(Q390X) subunit. Additionally, we show that zonisamide (ZNS)-an antiseizure drug reported to upregulate HRD1-reduces seizures in the Gabrg2+/Q390X mouse. We propose that a possible mechanism for this effect is a partial rescue of surface trafficking of GABAA receptors, which are otherwise sequestered in the ER due to the dominant-negative effect of the γ2(Q390X) subunit. Furthermore, this partial rescue was not due to changes in ER chaperones BiP and calnexin, as total expression of these chaperones was unchanged in γ2(Q390X) models. Our results here suggest that leveraging the endogenous ERAD pathway may present a potential method to degrade neurotoxic mutant proteins like the γ2(Q390X) subunit. We also demonstrate a pharmacological means of regulating proteostasis, as ZNS alters protein trafficking, providing further support for the use of proteostasis regulators for the treatment of genetic epilepsies.


Assuntos
Retículo Endoplasmático , Epilepsias Mioclônicas , Proteólise , Receptores de GABA-A , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Humanos , Convulsões Febris/metabolismo , Convulsões Febris/genética , Degradação Associada com o Retículo Endoplasmático , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Mutação , Células HEK293 , Chaperona BiP do Retículo Endoplasmático/metabolismo
2.
Brain Commun ; 6(2): fcae110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650830

RESUMO

We have previously characterized the molecular mechanisms for variants in γ-aminobutyric acid transporter 1-encoding solute carrier family 6-member 1 (SLC6A1) in vitro and concluded that a partial or complete loss of γ-aminobutyric acid uptake due to impaired protein trafficking is the primary aetiology. Impairment of γ-aminobutyric acid transporter 1 function could cause compensatory changes in the expression of γ-aminobutyric acid receptors, which, in turn, modify disease pathophysiology and phenotype. Here we used different approaches including radioactive 3H γ-aminobutyric acid uptake in cells and synaptosomes, immunohistochemistry and confocal microscopy as well as brain slice surface protein biotinylation to characterize Slc6a1+/A288V and Slc6a1+/S295L mice, representative of a partial or a complete loss of function of SLC6A1 mutations, respectively. We employed the γ-aminobutyric acid transporter 1-specific inhibitor [3H]tiagabine binding and GABAA receptor subunit-specific radioligand binding to profile the γ-aminobutyric acid transporter 1 and GABAA receptor expression in major brain regions such as cortex, cerebellum, hippocampus and thalamus. We also determined the total and surface expression of γ-aminobutyric acid transporter 1, γ-aminobutyric acid transporter 3 and expression of GABAA receptor in the major brain regions in the knockin mice. We found that γ-aminobutyric acid transporter 1 protein was markedly reduced in cortex, hippocampus, thalamus and cerebellum in both mutant mouse lines. Consistent with the findings of reduced γ-aminobutyric acid uptake for both γ-aminobutyric acid transporter 1(A288V) and γ-aminobutyric acid transporter 1(S295L), both the total and the γ-aminobutyric acid transporter 1-mediated 3H γ-aminobutyric acid reuptake was reduced. We found that γ-aminobutyric acid transporter 3 is only abundantly expressed in the thalamus and there was no compensatory increase of γ-aminobutyric acid transporter 3 in either of the mutant mouse lines. γ-Aminobutyric acid transporter 1 was reduced in both somatic regions and nonsomatic regions in both mouse models, in which a ring-like structure was identified only in the Slc6a1+/A288V mouse, suggesting more γ-aminobutyric acid transporter 1 retention inside endoplasmic reticulum in the Slc6a1+/A288V mouse. The [3H]tiagabine binding was similar in both mouse models despite the difference in γ-aminobutyric acid uptake function and γ-aminobutyric acid transporter 1 protein expression for both mutations. There were no differences in GABAA receptor subtype expression, except for a small increase in the expression of α5 subunits of GABAA receptor in the hippocampus of Slc6a1S295L homozygous mice, suggesting a potential interaction between the expression of this GABAA receptor subtype and the mutant γ-aminobutyric acid transporter 1. The study provides the first comprehensive characterization of the SLC6A1 mutations in vivo in two representative mouse models. Because both γ-aminobutyric acid transporter 1 and GABAA receptors are targets for anti-seizure medications, the findings from this study can help guide tailored treatment options based on the expression and function of γ-aminobutyric acid transporter 1 and GABAA receptor in SLC6A1 mutation-mediated neurodevelopmental and epileptic encephalopathies.

3.
Epilepsia ; 65(1): 204-217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37746768

RESUMO

OBJECTIVE: γ-Aminobutyric acid type A (GABAA ) receptor subunit gene mutations are major causes of various epilepsy syndromes, including severe kinds such as Dravet syndrome. Although the GABAA receptor is a major target for antiseizure medications, treating GABAA receptor mutations with receptor channel modulators is ineffective. Here, we determined the effect of a novel treatment with 4-phenylbutyrate (PBA) in Gabrg2+/Q390X knockin mice associated with Dravet syndrome. METHODS: We used biochemistry in conjunction with differential tagging of the wild-type and the mutant alleles, live brain slice surface biotinylation, microsome isolation, patch-clamp whole-cell recordings, and video-monitoring synchronized electroencephalographic (EEG) recordings in Gabrg2+/Q390X mice to determine the effect of PBA in vitro with recombinant GABAA receptors and in vivo with knockin mice. RESULTS: We found that PBA reduced the mutant γ2(Q390X) subunit protein aggregates, enhanced the wild-type GABAA receptor subunits' trafficking, and increased the membrane expression of the wild-type receptors. PBA increased the current amplitude of GABA-evoked current in human embryonic kidney 293T cells and the neurons bearing the γ2(Q390X) subunit protein. PBA also proved to reduce endoplasmic reticulum (ER) stress caused by the mutant γ2(Q390X) subunit protein, as well as mitigating seizures and EEG abnormalities in the Gabrg2+/Q390X mice. SIGNIFICANCE: This research has unveiled a promising and innovative approach for treating epilepsy linked to GABAA receptor mutations through an unconventional antiseizure mechanism. Rather than directly modulating the affected mutant channel, PBA facilitates the folding and transportation of wild-type receptor subunits to the cell membrane and synapse. Combining these findings with our previous study, which demonstrated PBA's efficacy in restoring GABA transporter 1 (encoded by SLC6A1) function, we propose that PBA holds significant potential for a wide range of genetic epilepsies. Its ability to target shared molecular pathways involving mutant protein ER retention and impaired protein membrane trafficking suggests broad application in treating such conditions.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Fenilbutiratos , Camundongos , Humanos , Animais , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/complicações , Convulsões/complicações , Epilepsia/genética , Ácido gama-Aminobutírico , Estresse do Retículo Endoplasmático/genética
4.
Biomolecules ; 13(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136660

RESUMO

Variants in the GABRB gene, which encodes the ß subunit of the GABAA receptor, have been implicated in various epileptic encephalopathies and related neurodevelopmental disorders such as Dravet syndrome and Angelman syndrome. These conditions are often associated with early-onset seizures, developmental regression, and cognitive impairments. The severity and specific features of these encephalopathies can differ based on the nature of the genetic variant and its impact on GABAA receptor function. These variants can lead to dysfunction in GABAA receptor-mediated inhibition, resulting in an imbalance between neuronal excitation and inhibition that contributes to the development of seizures. Here, 13 de novo EE-associated GABRB variants, occurring as missense mutations, were analyzed to determine their impact on protein stability and flexibility, channel function, and receptor biogenesis. Our results showed that all mutations studied significantly impact the protein structure, altering protein stability, flexibility, and function to varying degrees. Variants mapped to the GABA-binding domain, coupling zone, and pore domain significantly impact the protein structure, modifying the ß+/α- interface of the receptor and altering channel activation and receptor trafficking. Our study proposes that the extent of loss or gain of GABAA receptor function can be elucidated by identifying the specific structural domain impacted by mutation and assessing the variability in receptor structural dynamics. This paves the way for future studies to explore and uncover links between the incidence of a variant in the receptor topology and the severity of the related disease.


Assuntos
Encefalopatias , Receptores de GABA-A , Humanos , Receptores de GABA-A/metabolismo , Mutação de Sentido Incorreto , Mutação , Convulsões
5.
Exp Neurol ; 369: 114537, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703949

RESUMO

OBJECTIVE: GABAA receptor subunit gene (GABR) mutations are significant causes of epilepsy, including syndromic epilepsy. This report for the first time, describes intractable epilepsy and blindness due to optic atrophy in our patient, who has a microdeletion of the GABRA1 and GABRG2 genes. We then characterized the molecular phenotypes and determined patho-mechanisms underlying the genotype-phenotype correlations in a mouse model who is haploinsufficient for both genes (Gabra1+/-/Gabrg2+/- mouse). METHODS: Electroencephalography was conducted in both human and mice with the same gene loss. GABAA receptor expression was evaluated by biochemical and imaging approaches. Optic nerve atrophy was evaluated with fundus photography in human while electronic microscopy, visual evoked potential and electroretinography recordings were conducted in mice. RESULTS: The patient has bilateral optical nerve atrophy. Mice displayed spontaneous seizures, reduced electroretinography oscillatory potential and reduced GABAA receptor α1, ß2 and γ2 subunit expression in various brain regions. Electronic microscopy showed that mice also had optic nerve degeneration, as indicated by increased G-ratio, the ratio of the inner axonal diameter to the total outer diameter, suggesting impaired myelination of axons. More importantly, we identified that phenobarbital was the most effective anticonvulsant in mice and the patient's seizures were also controlled with phenobarbital after failing multiple anti-seizure drugs. CONCLUSIONS: This study is the first report of haploinsufficiency of two GABR epilepsy genes and visual impairment due to altered axonal myelination and resultant optic nerve atrophy. The study suggests the far-reaching impact of GABR mutations and the translational significance of animal models with the same etiology.


Assuntos
Epilepsia , Receptores de GABA-A , Humanos , Camundongos , Animais , Receptores de GABA-A/genética , Potenciais Evocados Visuais , Epilepsia/genética , Modelos Animais de Doenças , Fenobarbital , Cegueira/genética , Atrofia
6.
Biochem Biophys Res Commun ; 675: 26-32, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451214

RESUMO

OBJECTIVE: This research was devoted to estimating the outcomes of ginsenoside Rg1 on learning and memory ability and neuronal apoptosis in epileptic rats through ERK/CREB/BDNF pathway. METHODS: The epileptic rats induced by lithium chloride were stochastically separated into model subgroup, ginsenoside Rg1 different dose subgroups. The ginsenoside Rg1 subgroups were given 20, 30 and 40 mg/kg ginsenoside Rg1 by gavage individually. Another 6 normal rats were selected as the control subgroup. The seizures of each subgroup were estimated. Morris water maze was utilized for estimating the changes of cognitive function changes of rats. The injury and apoptosis of hippocampal neurons in each subgroup were detected by Nissl and TUNEL assays. HE staining was applied for the structural and pathomorphological changes of hippocampal neurons detection. The oxidative stress level in hippocampus of rats was estimated by ELISA. DCFH-DA probe was applied for the changes of reactive oxygen species (ROS) in brain tissue detection. The Bcl-2, Bax, ERK, p-ERK, CREB, p-CREB and BDNF levels in cerebral cortex were estimated by western blot, and PD98059, a blocker of ERK pathway, was used to intervene. RESULTS: In the control subgroup, Nissl bodies were abundant and evenly distributed, and cortical neurons were arranged neatly. In the model subgroup, the cytoplasmic staining of cortical neurons was insufficient and the arrangement of neurons was disordered. After treatment with ginsenoside Rg1, the morphology of neurons in the cerebral cortex was restored. The frequency of seizures, duration of seizures, Racine grade, escape latency, target quadrant residence time, MDA, TNF-α and ROS levels of cerebral cortex in the model subgroup boosted notablely versus the control subgroup. The frequency of crossing the original platform, the activity of SOD, the IL-10, p-ERK/ERK, p-CREB/CREB and BDNF levels in cerebral cortex were notablely lessened. The above-mentioned indexes in the ginsenoside Rg1 subgroup were notablely improved versus the model subgroup, and the three proteins levels in the PD98059 intervention subgroup were notablely lower. CONCLUSION: Ginsenoside Rg1 can improve cognitive dysfunction in epileptic rats, which may be concerned with ERK/CREB/BDNF pathway activation in cerebral cortex and lessening oxidative stress and inflammation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ginsenosídeos , Ratos , Animais , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio , Transdução de Sinais , Ginsenosídeos/farmacologia , Hipocampo , Apoptose , Convulsões
7.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176165

RESUMO

Lennox-Gastaut Syndrome (LGS) is a developmental and epileptic encephalopathy (DEE) characterized by multiple seizure types, electroencephalogram (EEG) patterns, and cognitive decline. Its etiology has a prominent genetic component, including variants in GABRB3 that encodes the GABAA receptor (GABAAR) ß3 subunit. LGS has an unknown pathophysiology, and few animal models are available for studying LGS. The objective of this study was to evaluate Gabrb3+/N328D knock-in mice as a model for LGS. We generated a heterozygous knock-in mouse expressing Gabrb3 (c.A982G, p.N238D), a de novo mutation identified in a patient with LGS. We investigated Gabrb3+/N328D mice for features of LGS. In 2-4-month-old male and female C57BL/J6 wild-type and Gabrb3+/N328D mice, we investigated seizure severity using video-monitored EEG, cognitive impairment using a suite of behavioral tests, and profiled GABAAR subunit expression by Western blot. Gabrb3+/N328D mice showed spontaneous seizures and signs of cognitive impairment, including deficits in spatial learning, memory, and locomotion. Moreover, Gabrb3+/N328D mice showed reduced ß3 subunit expression in the cerebellum, hippocampus, and thalamus. This phenotype of epilepsy and neurological impairment resembles the LGS patient phenotype. We conclude that Gabrb3+/N328D mice provide a good model for investigating the pathophysiology and therapeutic intervention of LGS and DEEs.


Assuntos
Epilepsia , Síndrome de Lennox-Gastaut , Masculino , Feminino , Camundongos , Animais , Síndrome de Lennox-Gastaut/diagnóstico , Receptores de GABA-A/genética , Camundongos Endogâmicos C57BL , Epilepsia/genética , Convulsões , Mutação , Eletroencefalografia , Ácido gama-Aminobutírico/genética
8.
Biomolecules ; 13(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979350

RESUMO

Febrile seizures (FS) are the most common form of epilepsy in children between six months and five years of age. FS is a self-limited type of fever-related seizure. However, complicated prolonged FS can lead to complex partial epilepsy. We found that among the GABAA receptor subunit (GABR) genes, most variants associated with FS are harbored in the γ2 subunit (GABRG2). Here, we characterized the effects of eight variants in the GABAA receptor γ2 subunit on receptor biogenesis and channel function. Two-thirds of the GABRG2 variants followed the expected autosomal dominant inheritance in FS and occurred as missense and nonsense variants. The remaining one-third appeared as de novo in the affected probands and occurred only as missense variants. The loss of GABAA receptor function and dominant negative effect on GABAA receptor biogenesis likely caused the FS phenotype. In general, variants in the GABRG2 result in a broad spectrum of phenotypic severity, ranging from asymptomatic, FS, genetic epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome individuals. The data presented here support the link between FS, epilepsy, and GABRG2 variants, shedding light on the relationship between the variant topological occurrence and disease severity.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Convulsões Febris , Humanos , Convulsões Febris/genética , Receptores de GABA-A/genética , Epilepsias Mioclônicas/genética , Epilepsia/genética , Mutação de Sentido Incorreto , Mutação
9.
Epilepsia ; 64(4): 1061-1073, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36495145

RESUMO

OBJECTIVE: Infantile spasms is an epileptic encephalopathy of childhood, and its pathophysiology is largely unknown. We generated a heterozygous knock-in mouse with the human infantile spasms-associated de novo mutation GABRB3 (c.A328G, p.N110D) to investigate its molecular mechanisms and to establish the Gabrb3+/N110D knock-in mouse as a model of infantile spasms syndrome. METHODS: We used electroencephalography (EEG) and video monitoring to characterize seizure types, and a suite of behavioral tests to identify neurological and behavioral impairment in Gabrb3+/N110D knock-in mice. Miniature inhibitory postsynaptic currents (mIPSCs) were recorded from layer V/VI pyramidal neurons in somatosensory cortex, and extracellular multi-unit recordings from the ventral basal nucleus of the thalamus in a horizontal thalamocortical slice were used to assess spontaneous thalamocortical oscillations. RESULTS: The infantile spasms-associated human de novo mutation GABRB3 (c.A328G, p.N110D) caused epileptic spasms early in development and multiple seizure types in adult Gabrb3+/N110D knock-in mice. Signs of neurological impairment, anxiety, hyperactivity, social impairment, and deficits in spatial learning and memory were also observed. Gabrb3+/N110D mice had reduced cortical mIPSCs and increased duration of spontaneous oscillatory firing in the somatosensory thalamocortical circuit. SIGNIFICANCE: The Gabrb3+/N110D knock-in mouse has epileptic spasms, seizures, and other neurological impairments that are consistent with infantile spasms syndrome in patients. Multiple seizure types and abnormal behaviors indicative of neurological impairment both early and late in development suggest that Gabrb3+/N110D mice can be used to study the pathophysiology of infantile spasms. Reduced cortical inhibition and increased duration of thalamocortical oscillatory firing suggest perturbations in thalamocortical circuits.


Assuntos
Espasmos Infantis , Humanos , Camundongos , Animais , Espasmos Infantis/genética , Receptores de GABA-A/genética , Convulsões , Células Piramidais , Eletroencefalografia , Síndrome , Espasmo
10.
Integr Cancer Ther ; 21: 15347354221130303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36255058

RESUMO

BACKGROUND: Previous studies have shown that berberine can inhibit glioma progression, although the underlying molecular mechanisms needed to be explored further. The aim of this study was to evaluate the suppressive effects of berberine on human glioma cells, and identify the underlying signaling pathways. MATERIAL AND METHODS: The cytotoxic effect of different concentrations of berberine against normal human glial cells (HEB) and 4 glioma cell lines was evaluated by the CCK-8 assay. Apoptosis was assayed by flow cytometry. In vitro migration and invasion were analyzed by the wound healing and transwell assays. The expression levels of specific proteins were measured by western blotting and ELISA. RESULTS: Berberine significantly inhibited the proliferation of human glioma U-87 cells, and induced apoptosis in the U-87 and LN229 cells by downregulating Bcl-2, and upregulating Bax and caspase-3. In addition, berberine also inhibited migration and invasion of the glioma cells. Furthermore, berberine exerted its effects on the proliferation, migration, invasion, and apoptosis of glioma cells by inhibiting the TGF-ß1/SMAD2/3 signaling pathway, and exogenous TGF-ß abrogated the pro-apoptotic and anti-oncogenic effects of berberine. CONCLUSIONS: Berberine inhibits glioma progression by targeting the TGF-ß1/SMAD2/3 signaling pathway.


Assuntos
Berberina , Glioma , Humanos , Apoptose , Proteína X Associada a bcl-2 , Berberina/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glioma/tratamento farmacológico , Glioma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Smad2 , Fator de Crescimento Transformador beta1/metabolismo
11.
Org Biomol Chem ; 20(37): 7391-7404, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098263

RESUMO

In recent years, many methods for the facile synthesis of pyridines and their derivatives have been developed. The [2 + 2 + 2] cycloaddition reaction of alkynes and nitriles catalyzed by transition metals has emerged as the most straightforward and efficient method to obtain pyridine derivatives. Recently, Earth-abundant cobalt has been employed as a versatile and economical catalyst for the synthesis of functionalized molecules, as compared to other transition metals. This review mainly focuses on the recent research and development of the Co-catalyzed intramolecular [2 + 2 + 2] cycloaddition of diynes-nitriles or intermolecular [2 + 2 + 2] cycloaddition reaction of alkynes or diynes with nitriles for the construction of chiral or achiral multi-substituted pyridines. Meanwhile, brief mechanistic insights are also discussed here to explain the observed regioselectivity.


Assuntos
Nitrilas , Piridinas , Alcinos , Catálise , Cobalto , Reação de Cicloadição , Di-Inos
12.
Brain Commun ; 4(3): fcac144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911425

RESUMO

We have studied the molecular mechanisms of variants in solute carrier Family 6 Member 1 associated with neurodevelopmental disorders, including various epilepsy syndromes, autism and intellectual disability. Based on functional assays of solute carrier Family 6 Member 1 variants, we conclude that partial or complete loss of γ-amino butyric acid uptake due to reduced membrane γ-amino butyric acid transporter 1 trafficking is the primary aetiology. Importantly, we identified common patterns of the mutant γ-amino butyric acid transporter 1 protein trafficking from biogenesis, oligomerization, glycosylation and translocation to the cell membrane across variants in different cell types such as astrocytes and neurons. We hypothesize that therapeutic approaches to facilitate membrane trafficking would increase γ-amino butyric acid transporter 1 protein membrane expression and function. 4-Phenylbutyrate is a Food and Drug Administration-approved drug for paediatric use and is orally bioavailable. 4-Phenylbutyrate shows promise in the treatment of cystic fibrosis. The common cellular mechanisms shared by the mutant γ-amino butyric acid transporter 1 and cystic fibrosis transmembrane conductance regulator led us to hypothesize that 4-phenylbutyrate could be a potential treatment option for solute carrier Family 6 Member 1 mutations. We examined the impact of 4-phenylbutyrate across a library of variants in cell and knockin mouse models. Because γ-amino butyric acid transporter 1 is expressed in both neurons and astrocytes, and γ-amino butyric acid transporter 1 deficiency in astrocytes has been hypothesized to underlie seizure generation, we tested the effect of 4-phenylbutyrate in both neurons and astrocytes with a focus on astrocytes. We demonstrated existence of the mutant γ-amino butyric acid transporter 1 retaining wildtype γ-amino butyric acid transporter 1, suggesting the mutant protein causes aberrant protein oligomerization and trafficking. 4-Phenylbutyrate increased γ-amino butyric acid uptake in both mouse and human astrocytes and neurons bearing the variants. Importantly, 4-phenylbutyrate alone increased γ-amino butyric acid transporter 1 expression and suppressed spike wave discharges in heterozygous knockin mice. Although the mechanisms of action for 4-phenylbutyrate are still unclear, with multiple possibly being involved, it is likely that 4-phenylbutyrate can facilitate the forward trafficking of the wildtype γ-amino butyric acid transporter 1 regardless of rescuing the mutant γ-amino butyric acid transporter 1, thus increasing γ-amino butyric acid uptake. All patients with solute carrier Family 6 Member 1 variants are heterozygous and carry one wildtype allele, suggesting a great opportunity for treatment development leveraging wildtype protein trafficking. The study opens a novel avenue of treatment development for genetic epilepsy via drug repurposing.

13.
HGG Adv ; 3(4): 100131, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36035247

RESUMO

Whole-exome sequencing (WES) in the clinic has identified several rare monogenic developmental and epileptic encephalopathies (DEE) caused by ion channel variants. However, WES often fails to provide actionable insight for rare diseases, such as DEEs, due to the challenges of interpreting variants of unknown significance (VUS). Here, we describe a "personalized structural biology" (PSB) approach that leverages recent innovations in the analysis of protein 3D structures to address this challenge. We illustrate this approach in an Undiagnosed Diseases Network (UDN) individual with DEE symptoms and a de novo VUS in KCNC2 (p.V469L), the Kv3.2 voltage-gated potassium channel. A nearby KCNC2 variant (p.V471L) was recently suggested to cause DEE-like phenotypes. Computational structural modeling suggests that both affect protein function. However, despite their proximity, the p.V469L variant is likely to sterically block the channel pore, while the p.V471L variant is likely to stabilize the open state. Biochemical and electrophysiological analyses demonstrate heterogeneous loss-of-function and gain-of-function effects, as well as differential response to 4-aminopyridine treatment. Molecular dynamics simulations illustrate that the pore of the p.V469L variant is more constricted, increasing the energetic barrier for K+ permeation, whereas the p.V471L variant stabilizes the open conformation. Our results implicate variants in KCNC2 as causative for DEE and guide the interpretation of a UDN individual. They further delineate the molecular basis for the heterogeneous clinical phenotypes resulting from two proximal pathogenic variants. This demonstrates how the PSB approach can provide an analytical framework for individualized hypothesis-driven interpretation of protein-coding VUS.

14.
Neurobiol Dis ; 172: 105810, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35840120

RESUMO

OBJECTIVE: Mutations in γ-aminobutyric acid (GABA) transporter 1 (GAT-1)-encoding SLC6A1 have been associated with myoclonic atonic epilepsy and other phenotypes. We determined the patho-mechanisms of the mutant GAT-1, in order to identify treatment targets. METHODS: We conducted whole-exome sequencing of patients with myoclonic atonic epilepsy (MAE) and characterized the seizure phenotypes and EEG patterns. We studied the protein stability and structural changes with homology modeling and machine learning tools. We characterized the function and trafficking of the mutant GAT-1 with 3H radioactive GABA uptake assay and confocal microscopy. We utilized different models including a knockin mouse and human astrocytes derived from induced pluripotent stem cells (iPSCs). We focused on astrocytes because of their direct impact of astrocytic GAT-1 in seizures. RESULTS: We identified four novel SLC6A1 variants associated with MAE and 2 to 4 Hz spike-wave discharges as a common EEG feature. Machine learning tools predicted that the variant proteins are destabilized. The variant protein had reduced expression and reduced GABA uptake due to endoplasmic reticular retention. The consistent observation was made in cortical and thalamic astrocytes from variant-knockin mice and human iPSC-derived astrocytes. The Slc6a+/A288V mouse, representative of MAE, had increased 5-7 Hz spike-wave discharges and absence seizures. INTERPRETATION: SLC6A1 variants in various locations of the protein peptides can cause MAE with similar seizure phenotypes and EEG features. Reduced GABA uptake is due to decreased functional GAT-1, which, in thalamic astrocytes, could result in increased extracellular GABA accumulation and enhanced tonic inhibition, leading to seizures and abnormal EEGs.


Assuntos
Epilepsias Mioclônicas , Epilepsia Tipo Ausência , Animais , Astrócitos/metabolismo , Epilepsias Mioclônicas/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Humanos , Camundongos , Convulsões/complicações , Convulsões/genética , Ácido gama-Aminobutírico
15.
J Clin Lab Anal ; 35(12): e24066, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714963

RESUMO

BACKGROUND: Expression of the TAZ gene is closely related to the prognosis of glioma patients. We hoped to find long noncoding RNAs (lncRNAs) related to TAZ and a new target for glioma treatment. METHODS: TAZ-related genes were found by dual-luciferase reporter gene assay, and the correlation of each gene was analyzed by the Pearson method. Human glioma cell lines U87 MG and U251 and glioma rats were used for cytology assays, and the related genes were transfected. We conducted immunohistochemistry, RT-qPCR, Western blotting, CCK8 test, flow cytometry, transwell assays, clone formation analysis, and tumor weight measurements to verify the above relationship. RESULTS: We found that miR-125a-5p was closely related to the TAZ gene, and the lncRNA MIR4435-2HG was closely related to miR-125a-5p. Both MIR4435-2HG-OE and TAZ increased the expression of the TAZ gene, activated the Wnt signaling pathway, inhibited apoptosis, and promoted migration and proliferation in glioma cells. Besides, it also increased the tumor volume of gliomas in a rat model subcutaneously inoculated with glioma cells. We also found miR-125a-5p could block the effect of MIR4435-2HG-OE and TAZ. CONCLUSIONS: LncRNA MIR4435-2HG obstructs the functions of miR-125a-5p and promotes neuroglioma development by upregulating the TAZ gene.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Idoso , Animais , Apoptose/genética , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Ratos Endogâmicos F344 , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Regulação para Cima , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Brain Commun ; 3(2): fcab033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095830

RESUMO

Dravet syndrome is a rare, catastrophic epileptic encephalopathy that begins in the first year of life, usually with febrile or afebrile hemiclonic or generalized tonic-clonic seizures followed by status epilepticus. De novo variants in genes that mediate synaptic transmission such as SCN1A and PCDH19 are often associated with Dravet syndrome. Recently, GABAA receptor subunit genes (GABRs) encoding α1 (GABRA1), ß3 (GABRB3) and γ2 (GABRG2), but not ß2 (GABRB2) or ß1 (GABRB1), subunits are frequently associated with Dravet syndrome or Dravet syndrome-like phenotype. We performed next generation sequencing on 870 patients with Dravet syndrome and identified nine variants in three different GABRs. Interestingly, the variants were all in genes encoding the most common GABAA receptor, the α1ß2γ2 receptor. Mutations in GABRA1 (c.644T>C, p. L215P; c.640C>T, p. R214C; c.859G>A; V287I; c.641G>A, p. R214H) and GABRG2 (c.269C>G, p. T90R; c.1025C>T, p. P342L) presented as de novo cases, while in GABRB2 two variants were de novo (c.992T>C, p. F331S; c.542A>T, p. Y181F) and one was autosomal dominant and inherited from the maternal side (c.990_992del, p.330_331del). We characterized the effects of these GABR variants on GABAA receptor biogenesis and channel function. We found that defects in receptor gating were the common deficiency of GABRA1 and GABRB2 Dravet syndrome variants, while mainly trafficking defects were found with the GABRG2 (c.269C>G, p. T90R) variant. It seems that variants in α1 and ß2 subunits are less tolerated than in γ2 subunits, since variant α1 and ß2 subunits express well but were functionally deficient. This suggests that all of these GABR variants are all targeting GABR genes that encode the assembled α1ß2γ2 receptor, and regardless of which of the three subunits are mutated, variants in genes coding for α1, ß2 and γ2 receptor subunits make them candidate causative genes in the pathogenesis of Dravet syndrome.

17.
Exp Neurol ; 342: 113723, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961861

RESUMO

BACKGROUND: Mutations in SLC6A1, encoding γ-aminobutyric acid (GABA) transporter 1 (GAT-1), have been recently associated with a spectrum of neurodevelopmental disorders ranging from variable epilepsy syndromes, intellectual disability (ID), autism and others. To date, most identified mutations are de novo. We here report a pedigree of two siblings associated with myoclonic astatic epilepsy, attention deficit hyperactivity disorder (ADHD), and ID. METHODS: Next-generation sequencing identified a missense mutation in the SLC6A1 gene (c.373G > A(p.Val125Met)) in the sisters but not in their shared mother who is also asymptomatic, suggesting gonadal mosaicism. We have thoroughly characterized the clinical phenotypes: EEG recordings identified features for absence seizures and prominent bursts of occipital intermittent rhythmic delta activity (OIRDA). The molecular pathophysiology underlying the clinical phenotypes was assessed using a multidisciplinary approach including machine learning, confocal microscopy, and high-throughput 3H radio-labeled GABA uptake assays in mouse astrocytes and neurons. RESULTS: The GAT-1(Val125Met) mutation destabilizes the global protein conformation and reduces transporter protein expression at total and cell surface. The mutant transporter protein was localized intracellularly inside the endoplasmic reticulum (ER) in both HEK293T cells and astrocytes which may directly contribute to seizures in patients. Radioactive 3H-labeled GABA uptake assay indicated the mutation reduced the function of the mutant GAT-1(Val125Met) to ~30% of the wildtype. CONCLUSIONS: The seizure phenotypes, ADHD, and impaired cognition are likely caused by a partial loss-of-function of GAT-1 due to protein destabilization resulting from the mutation. Reduced GAT-1 function in astrocytes and neurons may consequently alter brain network activities such as increased seizures and reduced attention.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Epilepsia/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Mosaicismo , Mutação de Sentido Incorreto/genética , Fenótipo , Adolescente , Animais , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Células Cultivadas , Criança , Epilepsia/complicações , Epilepsia/diagnóstico , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/química , Células HEK293 , Humanos , Camundongos , Linhagem , Estrutura Secundária de Proteína , Irmãos
18.
Brain ; 144(8): 2499-2512, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34028503

RESUMO

Solute carrier family 6 member 1 (SLC6A1) is abundantly expressed in the developing brain even before the CNS is formed. Its encoded GABA transporter 1 (GAT-1) is responsible for the reuptake of GABA into presynaptic neurons and glia, thereby modulating neurotransmission. GAT-1 is expressed globally in the brain, in both astrocytes and neurons. The GABA uptake function of GAT-1 in neurons cannot be compensated for by other GABA transporters, while the function in glia can be partially replaced by GABA transporter 3. Recently, many variants in SLC6A1 have been associated with a spectrum of epilepsy syndromes and neurodevelopmental disorders, including myoclonic atonic epilepsy, childhood absence epilepsy, autism, and intellectual disability, but the pathomechanisms associated with these phenotypes remain unclear. The presence of GAT-1 in both neurons and astrocytes further obscures the role of abnormal GAT-1 in the heterogeneous disease phenotype manifestations. Here we examine the impact on transporter trafficking and function of 22 SLC6A1 variants identified in patients with a broad spectrum of phenotypes. We also evaluate changes in protein expression and subcellular localization of the variant GAT-1 in various cell types, including neurons and astrocytes derived from human patient induced pluripotent stem cells. We found that a partial or complete loss-of-function represents a common disease mechanism, although the extent of GABA uptake reduction is variable. The reduced GABA uptake appears to be due to reduced cell surface expression of the variant transporter caused by variant protein misfolding, endoplasmic reticulum retention, and subsequent degradation. Although the extent of reduction of the total protein, surface protein, and the GABA uptake level of the variant transporters is variable, the loss of GABA uptake function and endoplasmic reticulum retention is consistent across induced pluripotent stem cell-derived cell types, including astrocytes and neurons, for the surveyed variants. Interestingly, we did not find a clear correlation of GABA uptake function and the disease phenotypes, such as myoclonic atonic epilepsy versus developmental delay, in this study. Together, our study suggests that impaired transporter protein trafficking and surface expression are the major disease-associated mechanisms associated with pathogenic SLC6A1 variants. Our results resemble findings from pathogenic variants in other genes affecting the GABA pathway, such as GABAA receptors. This study provides critical insight into therapeutic developments for SLC6A1 variant-mediated disorders and implicates that boosting transporter function by either genetic or pharmacological approaches would be beneficial.


Assuntos
Astrócitos/metabolismo , Epilepsia/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Bases de Dados Factuais , Epilepsia/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Humanos , Transtornos do Neurodesenvolvimento/metabolismo , Transporte Proteico/fisiologia , Ácido gama-Aminobutírico/metabolismo
20.
Epilepsia ; 61(10): 2301-2312, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32944937

RESUMO

OBJECTIVE: Neuroinflammation is a major theme in epilepsy, which has been characterized in acquired epilepsy but is poorly understood in genetic epilepsy. γ-Aminobutyric acid type A receptor subunit gene mutations are significant causes of epilepsy, and we have studied the pathophysiology directly resulting from defective receptor channels. Here, we determined the proinflammatory factors in a genetic mouse model, the Gabrg2+/Q390X knockin (KI). We have identified increased cytokines in multiple brain regions of the KI mouse throughout different developmental stages and propose that accumulation of the trafficking-deficient mutant protein may increase neuroinflammation, which would be a novel mechanism for genetic epilepsy. METHODS: We used enzyme-linked immunosorbent assay, immunoprecipitation, nuclei purification, immunoblot, immunohistochemistry, and confocal microscopy to characterize increased neuroinflammation and its potential causes in a Gabrg2+/Q390X KI mouse and a Gabrg2+/- knockout (KO) mouse, each associated with a different epilepsy syndrome with different severities. RESULTS: We found that proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1-beta (IL-1ß), and IL-6 were increased in the KI mice but not in the KO mice. A major underlying basis for the discrepancy in cytokine expression between the two mouse models is likely chronic mutant protein accumulation and endoplasmic reticulum (ER) stress. The presence of mutant protein dampened cytokine induction upon further cellular stimulation or external stress such as elevated temperature. Pharmacological induction of ER stress upregulated cytokine expression in the wild-type and KO but not in the KI mice. The increased cytokine expression was independent of seizure occurrence, because it was upregulated in both mice and cultured neurons. SIGNIFICANCE: Together, these data demonstrate a novel pathophysiology for genetic epilepsy, increased neuroinflammation, which is a common mechanism for acquired epilepsy. The findings thus provide the first link of neuroinflammation between genetic epilepsy associated with an ion channel gene mutation and acquired epilepsy.


Assuntos
Citocinas/genética , Citocinas/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Epilepsia/genética , Epilepsia/metabolismo , Receptores de GABA-A/genética , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Epilepsia/patologia , Feminino , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA-A/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...