Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(22): e2310014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193262

RESUMO

Here, a multiplex surface-enhanced Raman scattering (SERS)-immunochromatography (ICA) platform is presented using a graphene oxide (GO)-based film-like magnetic tag (GFe-DAu-D/M) that effectively captures and detects multiple bacteria in complex specimens. The 2D GFe-DAu-D/M tag with universal bacterial capture ability is fabricated through the layer-by-layer assembly of one layer of small Fe3O4 nanoparticles (NPs) and two layers of 30 nm AuNPs with a 0.5 nm built-in nanogap on monolayer GO nanosheets followed by co-modification with 4-mercaptophenylboronic acid (MPBA) and 5,5'-dithiobis-(2-nitrobenzoic acid).The GFe-DAu-D/M enabled the rapid enrichment of multiple bacteria by MPBA and quantitative analysis of target bacteria on test lines by specific antibodies, thus achieving multiple signal amplification of magnetic enrichment effect and multilayer dense hotspots and eliminating matrix interference in real-world applications. The developed technology can directly and simultaneously diagnose three major pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhimurium) with detection limits down to the level of 10 cells mL-1. The good performance of the proposed method in the detection of real urinary tract infection specimens is also demonstrated, suggesting the great potential of the GFe-DAu-D/M-ICA platform for the highly sensitive monitoring of bacterial infections or contamination.


Assuntos
Bactérias , Grafite , Análise Espectral Raman , Análise Espectral Raman/métodos , Grafite/química , Bactérias/isolamento & purificação , Cromatografia de Afinidade/métodos , Ouro/química , Humanos , Nanopartículas de Magnetita/química , Staphylococcus aureus/isolamento & purificação
2.
Pathogens ; 12(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839599

RESUMO

Streptococcus pneumoniae (S. pneumoniae) is a prominent pathogen of bacterial pneumonia and its rapid and sensitive detection in complex biological samples remains a challenge. Here, we developed a simple but effective immunochromatographic assay (ICA) based on silica-Au core-satellite (SiO2@20Au) SERS tags to sensitively and quantitatively detect S. pneumoniae. The high-performance SiO2@20Au tags with superior stability and SERS activity were prepared by one-step electrostatic adsorption of dense 20 nm AuNPs onto 180 nm SiO2 core and introduced into the ICA method to ensure the high sensitivity and accuracy of the assay. The detection limit of the proposed SERS-ICA reached 46 cells/mL for S. pneumoniae and was 100-fold more sensitive than the traditional AuNPs-based colorimetric ICA method. Further, considering its good stability, specificity, reproducibility, and easy operation, the SiO2@20Au-SERS-ICA developed here has great potential to meet the demands of on-site and accurate detection of respiratory pathogens.

3.
J Hazard Mater ; 437: 129347, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35753301

RESUMO

Rapid and sensitive detection of multiple foodborne bacteria without DNA amplification is still challenging. Here, we proposed an immunochromatographic assay (ICA) with multiplex analysis ability and high sensitivity for direct detection of bacteria in real food samples, based on an improved surface-enhanced Raman scattering (SERS) sensing strategy. Multifunctional Au shell-coated graphene oxide nanosheets (GO@Au) were fabricated and for the first time introduced into the ICA system as a two-dimensional film-like SERS label, which possessed huge surface area, excellent stability, and superior SERS activity. Different from the conventional spherical nanotags, the antibody-conjugated GO@Au nanosheet effectively and rapidly adhered to bacterial cells, improved the dispersibility of bacteria-nanolabel complexes on the ICA strips, and provided numerous stable hotspots for SERS signal enhancement. The combination of GO@Au labels and the ICA system achieved the multiplex and ultrasensitive determination of three major foodborne pathogens, namely, Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium, in a single test, with low detection limits (8, 10, and 10 cells/mL) and short detection time (20 min). The proposed biosensor demonstrated high stability and good accuracy in various food samples and is thus a promising tool for the rapid identification of bacteria.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Bactérias , Técnicas Biossensoriais/métodos , Ouro/química , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
4.
Sci China Life Sci ; 65(8): 1504-1516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35287183

RESUMO

Emerging infectious diseases, such as COVID-19, continue to pose significant threats to human beings and their surroundings. In addition, biological warfare, bioterrorism, biological accidents, and harmful consequences arising from dual-use biotechnology also pose a challenge for global biosecurity. Improving the early surveillance capabilities is necessary for building a common biosecurity shield for the global community of health for all. Furthermore, surveillance could provide early warning and situational awareness of biosecurity risks. However, current surveillance systems face enormous challenges, including technical shortages, fragmented management, and limited international cooperation. Detecting emerging biological risks caused by unknown or novel pathogens is of particular concern. Surveillance systems must be enhanced to effectively mitigate biosecurity risks. Thus, a global strategy of meaningful cooperation based on efficient integration of surveillance at all levels, including interdisciplinary integration of techniques and interdepartmental integration for effective management, is urgently needed. In this paper, we review the biosecurity risks by analyzing potential factors at all levels globally. In addition to describing biosecurity risks and their impact on global security, we also focus on analyzing the challenges to traditional surveillance and propose suggestions on how to integrate current technologies and resources to conduct effective global surveillance.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Biosseguridade , Bioterrorismo/prevenção & controle , COVID-19/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Humanos , Cooperação Internacional
5.
RSC Adv ; 11(55): 34425-34431, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35494737

RESUMO

Here, we report a label-free surface-enhanced Raman scattering (SERS) method for the rapid and accurate identification of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) based on aptamer-guided AgNP enhancement and convolutional neural network (CNN) classification. Sixty clinical isolates of Staphylococcus aureus (S. aureus), comprising 30 strains of MSSA and 30 strains of MRSA were used to build the CNN classification model. The developed method exhibited 100% identification accuracy for MSSA and MRSA, and is thus a promising tool for the rapid detection of drug-sensitive and drug-resistant bacterial strains.

6.
RSC Adv ; 11(22): 13297-13303, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35423879

RESUMO

This paper reports a colorimetric-fluorescent dual-signal lateral flow assay (LFA) based on vancomycin (Van)-modified SiO2-Au-QD tags for sensitive and quantitative detection of Staphylococcus aureus (S. aureus). The combination of high-performance Van-tags and detection antibodies integrated into the LFA system produced assays with high sensitivity and specificity. The visualization limit of the colorimetric signal and the detection limit of the fluorescence signal of the proposed method for S. aureus can reach 104 and 100 cells mL-1, respectively.

7.
Nanoscale ; 12(2): 795-807, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31830180

RESUMO

Lateral flow immunoassay (LFA) strips are extensively used for rapid tests of various biochemical molecules, but these strips still have some limitations in bacterial detection due to their low sensitivity and poor stability in complex samples. In this study, we reported a highly sensitive and quantitative fluorescent LFA strip for bacterial detection by using novel magnetic-core@dual quantum dot (QD)-shell nanoparticles (Fe3O4@DQDs) as multifunctional fluorescent labels. The Fe3O4@DQDs were prepared through a polyethyleneimine (PEI)-mediated layer-by-layer (LBL) assembly method, and they possess monodispersity, high magnetic responsiveness, good stability, and superior fluorescence properties. Based on these merits, the Fe3O4@DQDs were used to capture and enrich bacteria from complex samples and then used as advanced fluorescent labels of LFA strips for the quantitative detection of bacteria. Under optimal conditions, the assay ultra-sensitively detected Streptococcus pneumoniae with a low limit of detection of 8 cells per mL and a wide dynamic linear range of 10 cells per mL to 107 cells per mL. Systematic comparison revealed that the fluorescence detection limit of the Fe3O4@DQD-based strip was 55 and 1000 times higher than those of Fe3O4-core@QD-shell nanocomposite (Fe3O4-QD)-based and conventional QD microsphere-based strips, respectively. The proposed method also exhibited high specificity and selectivity for biological samples (human whole blood and sputum) and is thus a promising tool for real bacterial sample testing.


Assuntos
Bactérias/isolamento & purificação , Imunoensaio/instrumentação , Nanopartículas de Magnetita/química , Nanocompostos/química , Pontos Quânticos/química , Anticorpos Antibacterianos/química , Técnicas Bacteriológicas , Fluorescência , Limite de Detecção , Polietilenoimina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...