Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 75: 610-619, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415506

RESUMO

To identify the mechanistic effects of AgO nanoparticles on Gram-positive bacteria, S. aureus cells suspended in phosphate buffer solution (PBS) and deionized water were separately treated using AgO nanoparticles at different concentrations. The phase composition changes of the bactericide after killing S. aureus and the cellular responses of S. aureus to AgO were characterized by X-ray diffraction, atomic absorption spectrophotometer, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results show that AgO nanoparticles could kill S. aureus suspended in PBS and deionized water. The bactericidal effect of AgO bactericide against S. aureus in water was better than that in PBS, due to the formation of Ag3PO4 from the reaction between AgO and PBS. AgO nanoparticles exerted their bactericidal activity by multiple processes. AgO nanoparticles adhered to the surface of S. aureus cells firstly, then induced physical alterations in cell morphology and released silver ions, leading to initial injuries of cell membrane. Once membrane damage occurred, they entered the cells, and damaged the intracellular materials, eventually causing severe morphological and structural injuries to the cells and leakage of cytoplasm.


Assuntos
Antibacterianos , Nanopartículas/química , Óxidos , Compostos de Prata , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Óxidos/química , Óxidos/farmacologia , Compostos de Prata/química , Compostos de Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...