Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 798: 149352, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375240

RESUMO

China has released its ambitious target for carbon neutrality by 2060. With decades of top-down energy conservation and pollutant mitigation policies, the techno-mitigation space has gradually shrunk, while more mitigation space is required for a systematic approach. To help to uncover CO2 mitigation effects, location and better pathways from a systematic perspective, this paper combines disparity analysis and social network analysis to investigate the synergistic emissions reduction effect of urban agglomerations in three representative Chinese urban agglomerations, namely the Yangtze River Delta urban agglomeration (YRD), Chengdu-Chongqing urban agglomeration (CY) and Guangdong-Hong Kong-Macao urban agglomeration (GHM). Based on understanding of the carbon emission disparity characteristics of the three urban agglomerations using disparity analysis, this study uses social network analysis to study the synergistic CO2 reductions in each urban agglomeration from three perspectives: overall, individual, and connection. The findings emphasize that CY presented the greatest synergistic development capacity but with weak driving ability, indicating that overall synergistic emission reduction was difficult to achieve in a short period. GHM presented obvious fragmentation between the core and peripheral cities, resulting in a weak synergistic mitigation effect. YRD highlighted a solid synergistic development capacity with strong driving ability by its developed cities, thus generating the greatest potential to reduce CO2 emissions in the short and middle terms. Different cities assume different roles in synergistic CO2 reduction. Our results can be expected to enlighten more regionally oriented CO2 mitigation policy implications from an urban agglomeration perspective.


Assuntos
Dióxido de Carbono , Análise de Rede Social , China , Cidades , Rios
2.
Environ Res ; 185: 109463, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32247147

RESUMO

The power generation performance of a microbial fuel cell (MFC) greatly depends on the relative amount of electricigens in the anodic microbial community. Running the MFC multiple times can practically enrich the electricigens, and thus improve its power generation efficiency. However, Gram-positive electricigens cannot be enriched well because of their thick non-conductive peptidoglycan layer. Herein, we report a new Gram-positive electricigen enrichment method by regulating the peptidoglycan layer of the bacteria using lysozyme. Lysozyme can partially hydrolyze the peptidoglycans layer of Gram-positive Firmicutes to improve the permeability of cell wall, and thus enhance its electricity generation activity. The stimulation of Gram-positive electricigen endows MFCs a high power generation community structure, which results in the power density 42% higher than that of the control sample. Our work has provided a new and simple method for optimizing the anode community structure by regulating weak electricigens in the community with lysozyme.


Assuntos
Fontes de Energia Bioelétrica , Peptidoglicano , Parede Celular , Eletricidade , Muramidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...