Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Chem Sci ; 15(26): 10182-10192, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38966361

RESUMO

Significant water-related side reactions hinder the development of highly safe, low-cost aqueous zinc metal batteries (AZMBs) for grid-scale energy storage. Herein, by regulating the length of alkyl chains, we successfully adjust interstitial voids between the polymer chains of a metal soap interface between 1.48 Å (size of a zinc ion) and 4.0 Å (size of a water molecule). Therefore, water molecules are selectively "size-excluded," while smaller zinc ions are permitted to pass through. Consequently, water-related side reactions (including hydrogen evolution and corrosion) could be effectively inhibited. Furthermore, abundant zinc ion tunnels accompanied with zincophilic components facilitate the homogenization of the Zn2+ flux, thus preventing dendrite growth. Therefore, the Zn symmetric cell shows a lifespan of approximately 10 000 cycles at 20 mA cm-2 and 1 mA h cm-2, and the Zn//Na5V12O32 (NVO) full cell delivers much better cycling stability with much higher capacity retention of around 93% after 2000 cycles at 2 A g-1 compared to its bare Zn counterpart (19%). This work provides valuable insights for the utilization of metal soap interfaces and regulation of their channel size between perpendicular alkyl chains to realize precise water shielding, which is not only applicable in ZMBs but also in other aqueous batteries.

2.
Sci Total Environ ; 945: 174128, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908593

RESUMO

With the continuous increase in global air transportation, the impact of ultrafine particulate matter (PM) emissions from aviation on human health and environmental pollution is becoming increasingly severe. In addition to carbon reduction throughout the lifecycle, Sustainable Aviation Fuels (SAF) also represent a significant pathway for reducing PM emissions. However, due to issues such as airworthiness safety and adaptability, existing research has mostly focused on the emission performance of SAF when blended with traditional fuels at <50 %, leaving the emission characteristics of higher blending ratios to be explored. In this study, using measurement methods recommended by the International Civil Aviation Organization (ICAO), the PM emission reduction characteristics of small turbofan engines fueled with 100 % Hydroprocessed Esters and Fatty Acids (HEFA)-SAF were experimentally evaluated and compared with traditional fuels RP-3 and Diesel, while avoiding the interference of lubricant blending combustion. The results showed that the peak number concentration of particle size distribution (PSD), PM total number, as well as the number and mass concentration of non-volatile particulate matter (nvPM) decreased initially and then increased with rising thrust conditions. HEFA-SAF exhibits PSD with smaller diameters, and the Geometric Mean Diameter (GMD) ranges from 7.7 nm to 20.3 nm under all conditions. Both volatile particulates (vPM) and nvPM from HEFA-SAF are significantly reduced, with nvPM number emission index (EIn) being 92 % and 71 % lower than Diesel and RP-3, respectively. The nvPM mass emission index (EIm) also shows reductions of 96 % and 89 % compared to Diesel and RP-3. Microscopic characterization also indicated that using HEFA-SAF emitted fewer and smaller PMs. This study establishes a foundation for evaluating the effectiveness of 100 % SAF in reducing PM emissions within the aviation sector, and contributes to the airworthiness regulations development related to the use of SAF in a variety of application environments, alongside enhancing environmental protection measures.

3.
Free Radic Biol Med ; 221: 215-224, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38796028

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) induce oxidative stress, which may initiate ferroptosis, an iron-dependent programmed cell death, during abdominal aortic aneurysm (AAA) formation. Mitochondria regulate the progression of ferroptosis, which is characterized by the depletion of mitochondrial glutathione (mitoGSH) levels. However, the mechanisms are poorly understood. This study examined the role of mitoGSH in regulating NET-induced ferroptosis of smooth muscle cells (SMCs) during AAA formation. METHODS: Concentrations of NET markers were tested in plasma samples. Western blotting and immunofluorescent staining were performed to detect the expression and localization of NET and ferroptosis markers in tissue samples. The role of NETs and SMC ferroptosis during AAA formation was investigated using peptidyl arginine deiminase 4 gene (Padi4) knockout or treatment with a PAD4 inhibitor, ferroptosis inhibitor or activator in an angiotensin II-induced AAA mouse model. The regulatory effect of SLC25A11, a mitochondrial glutathione transporter, on mitoGSH and NET-induced ferroptosis of SMCs was investigated using in vitro and in vivo experiments. Transmission electron microscopy was used to detect mitochondrial damage. Blue native polyacrylamide gel electrophoresis was used to analyze the dimeric and monomeric forms of the protein. RESULTS: Significantly elevated levels of NETosis and ferroptosis markers in aortic tissue samples were observed during AAA formation. Specifically, NETs promoted AAA formation by inducing ferroptosis of SMCs. Subsequently, SLC25A11 was identified as a potential biomarker for evaluating the clinical prognosis of patients with AAA. Furthermore, NETs decreased the stability and dimerization of SLC25A11, leading to the depletion of mitoGSH. This depletion induced the ferroptosis of SMCs and promoted AAA formation. CONCLUSION: During AAA formation, NETs regulate the stability of the mitochondrial carrier protein SLC25A11, leading to the depletion of mitoGSH and subsequent activation of NET-induced ferroptosis of SMCs. Preventing mitoGSH depletion and ferroptosis in SMCs is a potential strategy for treating AAA.


Assuntos
Aneurisma da Aorta Abdominal , Armadilhas Extracelulares , Ferroptose , Glutationa , Mitocôndrias , Miócitos de Músculo Liso , Proteína-Arginina Desiminase do Tipo 4 , Ferroptose/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética , Humanos , Glutationa/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Masculino , Modelos Animais de Doenças , Estresse Oxidativo , Neutrófilos/metabolismo , Neutrófilos/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Angiotensina II/metabolismo
4.
Cell Death Dis ; 15(4): 253, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594244

RESUMO

Mitochondria are important for the activation of endothelial cells and the process of angiogenesis. NDUFS8 (NADH:ubiquinone oxidoreductase core subunit S8) is a protein that plays a critical role in the function of mitochondrial Complex I. We aimed to investigate the potential involvement of NDUFS8 in angiogenesis. In human umbilical vein endothelial cells (HUVECs) and other endothelial cell types, we employed viral shRNA to silence NDUFS8 or employed the CRISPR/Cas9 method to knockout (KO) it, resulting in impaired mitochondrial functions in the endothelial cells, causing reduction in mitochondrial oxygen consumption and Complex I activity, decreased ATP production, mitochondrial depolarization, increased oxidative stress and reactive oxygen species (ROS) production, and enhanced lipid oxidation. Significantly, NDUFS8 silencing or KO hindered cell proliferation, migration, and capillary tube formation in cultured endothelial cells. In addition, there was a moderate increase in apoptosis within NDUFS8-depleted endothelial cells. Conversely, ectopic overexpression of NDUFS8 demonstrated a pro-angiogenic impact, enhancing cell proliferation, migration, and capillary tube formation in HUVECs and other endothelial cells. NDUFS8 is pivotal for Akt-mTOR cascade activation in endothelial cells. Depleting NDUFS8 inhibited Akt-mTOR activation, reversible with exogenous ATP in HUVECs. Conversely, NDUFS8 overexpression boosted Akt-mTOR activation. Furthermore, the inhibitory effects of NDUFS8 knockdown on cell proliferation, migration, and capillary tube formation were rescued by Akt re-activation via a constitutively-active Akt1. In vivo experiments using an endothelial-specific NDUFS8 shRNA adeno-associated virus (AAV), administered via intravitreous injection, revealed that endothelial knockdown of NDUFS8 inhibited retinal angiogenesis. ATP reduction, oxidative stress, and enhanced lipid oxidation were detected in mouse retinal tissues with endothelial knockdown of NDUFS8. Lastly, we observed an increase in NDUFS8 expression in retinal proliferative membrane tissues obtained from human patients with proliferative diabetic retinopathy. Our findings underscore the essential role of the mitochondrial protein NDUFS8 in regulating endothelial cell activation and angiogenesis.


Assuntos
Angiogênese , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno/farmacologia , Lipídeos/farmacologia , Trifosfato de Adenosina/farmacologia , Proliferação de Células/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
5.
J Phys Chem Lett ; 15(2): 380-390, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38175719

RESUMO

The industrialization of aqueous zinc-ion batteries (AZIBs) is hampered by poor-performance separators. Filter paper (FP), with mature production processes and low prices, has potential as a separator. However, its swelling and decline of mechanical durability in aqueous environments make it easily punctured by dendrites. In response, wet strength promotion is proposed to toughen FP for robust AZIBs, termed wet-strengthened FP (WSFP). Due to the self-cross-linking network formed on cellulose fibers, water molecules are prevented from easily permeating and disrupting the hydrogen bonds between cellulose molecules. Moreover, the positively charged network can anchor SO42-, thus increasing the Zn2+ transference number and facilitating uniform zinc deposition. Surprisingly, the half and full cells with the WSFP separator present much more stable cycling than untreated FP and glass fiber (GF) separators. These results suggest that robust and low-cost WSFP separators provide a new avenue for the development of high-performance AZIBs with potential for commercialization.

6.
Breast Cancer ; 31(1): 96-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914960

RESUMO

BACKGROUND: Solute carrier family 38 member 5 (SLC38A5), as an amino acid transporter, play a vital role in cellular biological processes. In this study, we analyzed the function of SLC38A5 and its potential mechanism in breast cancer (BC) progression. METHODS: The expression of SLC38A5 in cancer and adjacent-normal tissues was analyzed by qRT-PCR and Western blot, and its correlation with patient prognosis was analyzed. The immunohistochemical staining of cancer tissues and adjacent-normal tissues was performed on SLC38A5-positive specimens. BC mice were successfully applied to examine the role of SLC38A5 on tumor proliferation using the CCK-8 assay. In BC cells and mouse tumor tissues, SLC38A5 and PCNA expression were determined by Western blotting. RESULTS: The study found that SLC38A5 was highly expressed in BC patients and associated with a poor survival. SLC38A5 silencing inhibited BC cell viability and glutamine uptake. In addition, SLC38A5 overexpression promoted BC cell viability via the glutamine metabolism. SLC38A5 inhibited cisplatin chemosensitivity in BC cells. Importantly, SLC38A5 silencing inhibited tumor growth in vivo. CONCLUSION: Our findings suggest that SLC38A5 enhances BC cell viability by glutamine metabolism, inhibits the chemical sensitivity of cisplatin in BC cells, and promotes tumor growth, emphasizing the clinical relevance of SLC38A5 in BC management as a novel potential therapeutic target.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Glutamina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Sistemas de Transporte de Aminoácidos Neutros/uso terapêutico
7.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958715

RESUMO

Persimmon is a fruit that contains sugars, vitamins, phenolic compounds, and various other nutrients. The aim of this study was to explore the structure of carboxymethylated persimmon polysaccharide (CM-PFP) and its interaction with the human gut microbiota. Carboxymethyl modification of the persimmon polysaccharide (PFP) increased both the Mw and Mn, enhanced dispersion stability, and decreased thermal stability. Both PFP and CM-PFP promoted the proliferation of Lactobacillus while inhibiting the proliferation of Staphylococcus aureus and Escherichia coli. In the simulated fecal fermentation, the pH of PFP- and CM-PFP-containing media decreased, the content of short-chain fatty acids increased, and the abundance of intestinal flora at the phylum and genus levels changed. The relative abundance of harmful intestinal bacteria was significantly reduced in both PFP and CM-PFP groups. Furthermore, it was found that CM-PFP was more easily metabolized than PFP, glucose, and fructo-oligosaccharide (FOS) and had a proliferation increase effect on Lactobacillus. Therefore, CM-PFP has a significant positive effect on both Lactobacillus proliferation and the human gut microbiota.


Assuntos
Diospyros , Microbioma Gastrointestinal , Humanos , Frutas/química , Diospyros/química , Polissacarídeos/química , Proliferação de Células
8.
J Inflamm Res ; 16: 5061-5067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936597

RESUMO

Immune checkpoint inhibitors such as monoclonal antibodies have been used recently with greater effect for the management of non-small cell lung cancer (NSCLC). Sintilimab, a fully human IgG4 monoclonal antibody is specific for the immune checkpoint protein programmed cell death receptor-1 (PD-1). It is a common medication adopted for treating Hodgkin's lymphoma and NSCLC. The adverse effects associated with the use of monoclonal antibodies should be closely monitored and in the current report, the use of sintilimab for treating NSCLC led to skin-associated adverse effects such as Stevens-Johnson syndrome and toxic epidermal necrolysis. Genetic testing showed that genes such as KRAS, CREBBP, NTRK1, RAF1, and TP53 were mutated. Initial visible symptom included the formation of a vesicular rash on the skin that had spread to the upper limbs, chest, and dorsum 1 week after the administration of sintilimab. The patient received anti-inflammatory agents to prevent worsening of the rashes and further infections. When the vesicles in back and limbs enlarged and the neck skin began to desquamate, the patient was diagnosed with Stevens-Johnson syndrome and sintilimab-induced toxic epidermal necrolysis. Toxic epidermal necrolysis was diagnosed via clinical symptoms and physical examination. The patient also reported the symptoms of oral mucositis. As soon as the dose of sintilimab was reduced to 20 mg/day, the skin-associated condition of the patient began to improve. Although the lump in the lungs decreased considerably 45 days after initial administration of sintilimab, the medication was stopped from use as soon as the skin-related symptoms improved after its withdrawal. This report suggests that close monitoring, personal care, and proper use of medications such as sintilimab should be implemented to avoid such rare skin-associated toxicities as an adverse effect.

9.
Cancer Cell Int ; 23(1): 294, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007443

RESUMO

Triple-negative breast Cancer (TNBC) is a highly malignant cancer with unclear pathogenesis. Within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) vitally influence tumor onset and progression. Thus, this research aimed to identify distinct subgroups of CAF using single-cell and TNBC-related information from the GEO and TCGA databases, respectively. The primary aim was to establish a novel predictive model based on the CAF features and their clinical relevance. Moreover, the CAFs were analyzed for their immune characteristics, response to immunotherapy, and sensitivity to different drugs. The developed predictive model demonstrated significant effectiveness in determining the prognosis of patients with TNBC, TME, and the immune landscape of the tumor. Of note, the expression of GPR34 was significantly higher in TNBC tissues compared to that in other breast cancer (non-TNBC) tissues, indicating that GPR34 plays a crucial role in the onset and progression of TNBC. In summary, this research has yielded a novel predictive model for TNBC that holds promise for the accurate prediction of prognosis and response to immunotherapy in patients with TNBC.

10.
Chem Biol Drug Des ; 102(6): 1387-1398, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604776

RESUMO

Ischemia/reperfusion (I/R) of skeletal muscle in the lower limbs is an important factor affecting the outcome of lower limbs ischemia patients, with no effective preventive or therapeutic approaches available. The study was to investigate the effect of syringic acid (SA) on I/R skeletal muscle in the lower limbs injury. Mice femoral artery I/R models and C2C12 cell hypoxia/reoxygenation (H/R) models was establish, tissue damage, inflammatory status, and high mobility group box 1 (HMGB1) pathway were evaluated using histological analysis, enzyme-linked immunosorbent assay, and western blotting. Further, the study detected the effect of SA on cell apoptosis, lipid peroxidation, Fe2+ level, and ferroptosis-related proteins expression. Finally, the effect of HMGB1 expression on SA in H/R stimulation was studied. SA alleviated pathological damage and reduced levels of IL-1ß, IL-6, and TNF-α in muscle tissues from femoral artery I/R mouse models. SA upregulated Bcl-2 and SOD as well as downregulated Bax, MDA, TBARS content, and Fe2+ level in H/R-induced cells. SA inhibited HMGB1 expression and promoted Nrf2, HO-1, GPX4, and SLC7A11 expressions in the injured tissues and cells. Such effects of SA on H/R-induced cells were rescued by HMGB1 overexpression. SA suppressed ferroptosis of skeletal muscle cells to alleviate lower limb I/R injury in mice by blocking the HMGB1 pathway, providing new insights for the treatment of lower limb ischemia-reperfusion injury.


Assuntos
Ferroptose , Proteína HMGB1 , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Proteína HMGB1/uso terapêutico , Transdução de Sinais , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia , Extremidade Inferior/patologia , Músculo Esquelético/metabolismo
11.
Adv Mater ; 35(51): e2303703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555529

RESUMO

Electrochemical nitrogen reduction reaction (NRR) is a burgeoning field for green and sustainable ammonia production, in which numerous potential catalysts emerge endlessly. However, satisfactory performances are still not realized under practical applications due to the limited solubility and sluggish diffusion of nitrogen at the interface. Herein, molecular imprinting technology is adopted to construct an adlayer with abundant nitrogen imprints on the electrocatalyst, which is capable of selectively recognizing and proactively aggregating high-concentrated nitrogen at the interface while hindering the access of overwhelming water simultaneously. With this favorable microenvironment, nitrogen can preferentially occupy the active surface, and the NRR equilibrium can be positively shifted to facilitate the reaction kinetics. Approximately threefold improvements in both ammonia production rate (185.7 µg h-1 mg-1 ) and Faradaic efficiency (72.9%) are achieved by a metal-free catalyst compared with the bare one. It is believed that the molecular imprinting strategy should be a general method to find further applicability in numerous catalysts or even other reactions facing similar challenges.

12.
Front Med (Lausanne) ; 10: 1168499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457561

RESUMO

Objective: Nonalcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent worldwide. This study guides the prevention and diagnosis of NAFLD by analyzing its risk factors and the diagnostic value of each index for NAFLD. Method: We collected the clinical information of adults individuals who underwent physical examination in the Physical Examination Center of Qingpu Branch of Zhongshan Hospital, Fudan University, from January 2016 to January 2020, including gender, age, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). We performed logistic regression analysis and ROC diagnostic analysis. Results: The results showed that age, BMI, SBP, ALT, AST, FBG, TBIL, TG, and LDL were risk factors for NAFLD in adults, and HDL was a protective factor (all p-values were less than 0.05). Among them, age, BMI, ALT, TG, and HDL had a predictive value for the occurrence of NAFLD in the adults (AUC = 0.708, 0.836, 0.767, 0.780, and 0.732, respectively). The combination of age, BMI, ALT, TG, and HDL had a diagnostic value for the occurrence of NAFLD (AUC = 0.881). Conclusion: Healthy people should pay attention to their BMI levels, manage blood pressure, blood glucose, and lipid levels, and pay attention to changes in ALT and AST index levels to prevent NAFLD. Age, BMI, ALT, TG, and HDL indexes are helpful factors in the diagnosis of NAFLD.

13.
J Chem Inf Model ; 63(14): 4277-4290, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37399293

RESUMO

Determining the catalytic site of enzymes is a great help for understanding the relationship between protein sequence, structure, and function, which provides the basis and targets for designing, modifying, and enhancing enzyme activity. The unique local spatial configuration bound to the substrate at the active center of the enzyme determines the catalytic ability of enzymes and plays an important role in the catalytic site prediction. As a suitable tool, the graph neural network can better understand and identify the residue sites with unique local spatial configurations due to its remarkable ability to characterize the three-dimensional structural features of proteins. Consequently, a novel model for predicting enzyme catalytic sites has been developed, which incorporates a uniquely designed adaptive edge-gated graph attention neural network (AEGAN). This model is capable of effectively handling sequential and structural characteristics of proteins at various levels, and the extracted features enable an accurate description of the local spatial configuration of the enzyme active site by sampling the local space around candidate residues and special design of amino acid physical and chemical properties. To evaluate its performance, the model was compared with existing catalytic site prediction models using different benchmark datasets and achieved the best results on each benchmark dataset. The model exhibited a sensitivity of 0.9659, accuracy of 0.9226, and area under the precision-recall curve (AUPRC) of 0.9241 on the independent test set constructed for evaluation. Furthermore, the F1-score of this model is nearly four times higher than that of the best-performing similar model in previous studies. This research can serve as a valuable tool to help researchers understand protein sequence-structure-function relationships while facilitating the characterization of novel enzymes of unknown function.


Assuntos
Redes Neurais de Computação , Proteínas , Proteínas/química , Domínio Catalítico , Aminoácidos/química , Sequência de Aminoácidos
14.
Discov Oncol ; 14(1): 4, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631680

RESUMO

PURPOSE: Recent studies have revealed an increase in the incidence rate of non-alcoholic fatty liver disease-related hepatocellular carcinoma (NAFLD-HCC). Furthermore, the association of Sphingosine 1-phosphate receptor 2 (S1PR2) with various types of tumours is identified, and the metabolism of conjugated bile acids (CBAs) performs an essential function in the onset and development of HCC. However, the association of CBA and S1PR2 with NAFLD-HCC is unclear. METHODS: The relationship between the expression of S1PR2 and the prognosis of patients suffering from NAFLD-HCC was investigated by bioinformatics techniques. Subsequently, the relationship between S1PR2 and the biological behaviours of HCC cell lines Huh 7 and HepG2 was explored by conducting molecular biology assays. Additionally, several in vivo animal experiments were carried out for the elucidation of the biological impacts of S1PR2 inhibitors on HCC cells. Finally, We used Glycodeoxycholic acid (GCDA) of CBA to explore the biological effects of CBA on HCC cell and its potential mechanism. RESULTS: High S1PR2 expression was linked to poor prognosis of the NAFLD-HCC patients. According to cellular assay results, S1PR2 expression could affect the proliferation, invasion, migration, and apoptosis of Huh 7 and HepG2 cells, and was closely associated with the G1/G2 phase of the cell cycle. The experiments conducted in the In vivo conditions revealed that the overexpression of S1PR2 accelerated the growth of subcutaneous tumours. In addition, JTE-013, an antagonist of S1PR2, effectively inhibited the migration and proliferation of HCC cells. Furthermore, the bioinformatics analysis highlighted a correlation between S1PR2 and the PI3K/AKT/mTOR pathway. GCDA administration further enhanced the expression levels of p-AKT, p-mTOR, VEGF, SGK1, and PKCα. Moreover, both the presence and absence of GCDA did not reveal any significant change in the levels of S1PR2, p-AKT, p-mTOR, VEGF, SGK1, and PKCα proteins under S1PR2 knockdown, indicating that CBA may regulates the PI3K/AKT/mTOR pathway by mediating S1PR2 expression. CONCLUSION: S1PR2 is a potential prognostic biomarker in NAFLD-HCC. In addition, We used GCDA in CBAs to treat HCC cell and found that the expression of S1PR2 was significantly increased, and the expression of PI3K/AKT/mTOR signalling pathway-related signal molecules was also significantly enhanced, indicating that GCDA may activate PI3K/AKT/mTOR signalling pathway by up-regulating the expression of S1PR2, and finally affect the activity of hepatocellular carcinoma cells. S1PR2 can be a candidate therapeutic target for NAFLD-HCC. Collectively, the findings of this research offer novel perspectives on the prevention and treatment of NAFLD-HCC.

15.
PeerJ ; 10: e13159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378935

RESUMO

Background: Bronchoalveolar lavage fluid (BALF) exosomes possess different properties in different diseases, which are mediated through microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), among others. By sequencing the differentially expressed lncRNAs in BALF exosomes, we seek potential targets for the diagnosis and treatment of acute lung injury (ALI). Methods: Considering that human and rat genes are about 80% similar, ALI was induced using lipopolysaccharide in six male Wistar rats, with six rats as control (all weighing 200 ± 20 g and aged 6-8 weeks). BALF exosomes were obtained 24 h after ALI. The exosomes in BALF were extracted by ultracentrifugation. The differential expression of BALF exosomal lncRNAs in BALF was analyzed by RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the functions of differentially expressed lncRNAs, which were confirmed by reverse transcription-polymerase chain reaction. Results: Compared with the control group, the ALI group displayed a higher wet/dry ratio, tumor necrosis factor-α levels, and interleukin-6 levels (all P < 0.001). The airway injection of exosomes in rats led to significant infiltration by neutrophils. A total of 2,958 differentially expressed exosomal lncRNAs were identified, including 2,524 upregulated and 434 downregulated ones. Five lncRNAs confirmed the reliability of the sequencing data. The top three GO functions were phagocytic vesicle membrane, regulation of receptor biosynthesis process, and I-SMAD binding. Salmonella infection, Toll-like receptor signaling pathway, and osteoclast differentiation were the most enriched KEGG pathways. The lncRNA-miRNA interaction network of the five confirmed lncRNAs could be predicted using miRDB. Conclusions: BALF-derived exosomes play an important role in ALI development and help identify potential therapeutic targets related to ALI.


Assuntos
Lesão Pulmonar Aguda , Exossomos , MicroRNAs , RNA Longo não Codificante , Humanos , Masculino , Ratos , Animais , Exossomos/genética , RNA Longo não Codificante/genética , Líquido da Lavagem Broncoalveolar , Reprodutibilidade dos Testes , Ratos Wistar , MicroRNAs/genética , Redes Reguladoras de Genes , Análise de Sequência de RNA , Lesão Pulmonar Aguda/genética
16.
Adv Mater ; 34(21): e2200131, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35357047

RESUMO

The fluidity of aqueous electrolytes and undesired H2 evolution reaction (HER) can cause severe interfacial turbulence in aqueous Zn metal batteries (ZMBs) at deep cycling with high capacities and current densities, which would further perturb ion flux and aggravate Zn dendrite growth. In this study, a colloid-polymer electrolyte (CPE) with special colloidal phase and suppressed HER is designed to diminish interfacial turbulence and boost deep Zn electrochemistry. Density functional theory calculations confirm that the quantitative migratory barriers of Zn2+ along the transport pathway in CPE demonstrate much smaller fluctuations compared with normal aqueous electrolyte, indicating that CPE can effectively diminish interfacial disturbance. Benefitting from this, the Zn2+ ion flux can be homogenized and deposited evenly on the electrode, which is confirmed by finite element simulation and in situ Raman measurements. Consequently, CPE enables stable operation of Zn//Cu cells even with high capacity (up to 20 mAh cm-2 ) and current density (up to 100 mA cm-2 ) and Zn//Na5 V12 O32 full-cell with N/P ratio as low as 1 (i.e., 100% Zn utilization). It is believed that this strategy opens a brand-new avenue based on CPE toward boosting deep-cycling electrochemistry in ZMBs and even other aqueous energy-storage applications.

17.
Nano Lett ; 22(7): 2898-2906, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353004

RESUMO

The practical application of aqueous high-rate Zn metal battery (ZMB) is limited due to accelerated dendrite formation at high current densities. It is urgent to find an electrolyte, which could not only be mechanically stiff to clamp down dendrites but also not sacrifice ionic conductivity and interfacial compatibility. Herein, a new type of dynamically "solid-liquid" interconvertible electrolyte based on non-Newtonian fluid (NNFE) is proposed. Liquidity characteristic of NNFE is favorable for electrochemical kinetics and interfacial compatibility. Furthermore, in an area with high current rate NNFE would respond and mechanically stiffen to dissuade localized increase in Zn dendrite growth. Even at a current density of 50 mA cm-2, NNFE enables reversible and stable operation of a Zn symmetrical cell over 20 000 cycles. For Zn//Na5V12O32 (NVO) full cell, the NNFE also realizes lengthy cycling for 5000 periods at 5 A g-1. This research opens up new inspirations to high-rate Zn metal even other metal batteries.

18.
J Spinal Cord Med ; 44(sup1): S159-S172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34779737

RESUMO

OBJECTIVE: To undertake a cost-utility analysis comparing virtual illusion (VI) and transcranial direct current stimulation (tDCS) combination therapy, tDCS alone and standard pharmacological care in Ontario, Canada from a societal perspective over a three-month time horizon. DESIGN: Cost-utility analysis using Markov model methods. SETTING: Community setting in Ontario, Canada. PARTICIPANTS: Individuals with spinal cord injury and neuropathic pain (NP) resistant to pharmacological therapy. INTERVENTIONS: Virtual illusion and transcranial direct current stimulation, transcranial direct current stimulation alone and standard pharmacological therapy. OUTCOME MEASURES: Incremental costs, quality adjusted life years (QALY) and incremental cost effectiveness ratio. RESULTS: The incremental cost effectiveness ratio of VI and tDCS therapy cost is $3,396 per QALY (2020 Canadian dollars) when compared to standard care. The incremental cost per QALY of tDCS therapy alone is $33,167. VI and tDCS therapy had lower incremental costs (-$519) and higher incremental QALYs (0.026) compared to tDCS alone. From a public healthcare payer perspective, there is a 74% probability that VI and tDCS therapy and 54% probability that tDCS alone would be cost effective at a $50,000 per QALY willingness-to-pay threshold. Our findings remained relatively robust in various scenario analyses. CONCLUSION: Our findings suggest that at three-months after therapy, VI and tDCS combination therapy may be more cost effective than tDCS therapy alone. Based on conventional health technology funding thresholds, VI and tDCS combination therapy merits consideration for the treatment of NP in adults with spinal cord injuries.


Assuntos
Ilusões , Neuralgia , Traumatismos da Medula Espinal , Estimulação Transcraniana por Corrente Contínua , Adulto , Canadá , Análise Custo-Benefício , Humanos , Neuralgia/terapia , Ontário , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia
19.
Natl Sci Rev ; 8(5): nwaa136, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691629

RESUMO

Activation of high-energy triple-bonds of N2 is the most significant bottleneck of ammonia synthesis under ambient conditions. Here, by importing cobalt single clusters as strong electron-donating promoter into the catalyst, the rate-determining step of ammonia synthesis is altered to the subsequent proton addition so that the barrier of N2 dissociation can be successfully overcome. As revealed by density functional theory calculations, the N2 dissociation becomes exothermic over the cobalt single cluster upon the strong electron backdonation from metal to the N2 antibonding orbitals. The energy barrier of the positively shifted rate-determining step is also greatly reduced. At the same time, advanced sampling molecular dynamics simulations indicate a barrier-less process of the N2 approaching the active sites that greatly facilitates the mass transfer. With suitable thermodynamic and dynamic property, a high ammonia yield rate of 76.2 µg h-1 mg[Formula: see text] and superior Faradaic efficiency of 52.9% were simultaneously achieved.

20.
ACS Nano ; 15(8): 13847-13856, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34382785

RESUMO

The sluggish solid-solid conversion kinetics from Li2S4 to Li2S during discharge is considered the main problem for cryogenic Li-S batteries. Herein, an all-liquid-phase reaction mechanism, where all the discharging intermediates are dissolved in the functional thioether-based electrolyte, is proposed to significantly enhance the kinetics of Li-S battery chemistry at low temperatures. A fast liquid-phase reaction pathway thus replaces the conventional slow solid-solid conversion route. Spectral investigations and molecular dynamics simulations jointly elucidate the greatly enhanced kinetics due to the highly decentralized state of solvated intermediates in the electrolyte. Overall, the battery brings an ultrahigh specific capacity of 1563 mAh g-1sulfur in the cathode at -60 °C. This work provides a strategy for developing cryogenic Li-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...