Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119768, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838858

RESUMO

The regulatory mechanism of the transcription factor GATA3 in the differentiation and maturation process of extravillous trophoblasts (EVT) in early pregnancy placenta, as well as its relevance to the occurrence of pregnancy disorders, remains poorly understood. This study leveraged single-cell RNA sequencing data from placental organoid models and placental tissue to explore the dynamic changes in GATA3 expression during EVT maturation. The expression pattern exhibited an initial upregulation followed by subsequent downregulation, with aberrant GATA3 localization observed in cases of recurrent miscarriage (RM). By identifying global targets regulated by GATA3 in primary placental EVT cells, JEG3, and HTR8/SVneo cell lines, this study offered insights into its regulatory mechanisms across different EVT cell models. Shared regulatory targets among these cell types and activation of trophoblast cell marker genes emphasized the importance of GATA3 in EVT differentiation and maturation. Knockdown of GATA3 in JEG3 cells led to repression of GATA3-induced epithelial-mesenchymal transition (EMT), as evidenced by changes in marker gene expression levels and enhanced migration ability. Additionally, interference with GATA3 accelerated cellular senescence, as indicated by reduced proliferation rates and increased activity levels for senescence-associated ß-galactosidase enzyme, along with elevated expression levels for senescence-associated genes. This study provides comprehensive insights into the dual role of GATA3 in regulating EMT and cellular senescence during EVT differentiation, shedding light on the dynamic changes in GATA3 expression in normal and pathological placental conditions.

2.
Front Immunol ; 14: 1259381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077346

RESUMO

Serum C-reactive protein (CRP) has been found elevated during COVID-19 infection, and associated with systematic inflammation as well as a poor clinical outcome. However, how did CRP participated in the COVID-19 pathogenesis remains poorly understood. Here, we report that serum C-reactive protein (CRP) levels are correlated with megakaryocyte marker genes and could regulate immune response through interaction with megakaryocytes. Molecular dynamics simulation through ColabFold showed a reliable interaction between monomeric form of CRP (mCRP) and the secreted protein acidic and rich in cysteine (SPARC). The interaction does not affect the physiological activities of SPARC while would be disturbed by pentamerization of CRP. Interplay between SPARC and mCRP results in a more intense immune response which may led to poor prognosis. This study highlights the complex interplay between inflammatory markers, megakaryocytes, and immune regulation in COVID-19 and sheds light on potential therapeutic targets.


Assuntos
Proteína C-Reativa , COVID-19 , Humanos , Proteína C-Reativa/metabolismo , Células Cultivadas , Inflamação/metabolismo , Osteonectina/genética
3.
BMC Biol ; 21(1): 39, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36803965

RESUMO

BACKGROUND: Adaptation to high-altitude hypobaric hypoxia has been shown to require a set of physiological traits enabled by an associated set of genetic modifications, as well as transcriptome regulation. These lead to both lifetime adaptation of individuals to hypoxia at high altitudes and generational evolution of populations as seen for instance in those of Tibet. Additionally, RNA modifications, which are sensitive to environmental exposure, have been shown to play pivotal biological roles in maintaining the physiological functions of organs. However, the dynamic RNA modification landscape and related molecular mechanisms in mouse tissues under hypobaric hypoxia exposure remain to be fully understood. Here, we explore the tissue-specific distribution pattern of multiple RNA modifications across mouse tissues. RESULTS: By applying an LC-MS/MS-dependent RNA modification detection platform, we identified the distribution of multiple RNA modifications in total RNA, tRNA-enriched fragments, and 17-50-nt sncRNAs across mouse tissues; these patterns were associated with the expression levels of RNA modification modifiers in different tissues. Moreover, the tissue-specific abundance of RNA modifications was sensitively altered across different RNA groups in a simulated high-altitude (over 5500 m) hypobaric hypoxia mouse model with the activation of the hypoxia response in mouse peripheral blood and multiple tissues. RNase digestion experiments revealed that the alteration of RNA modification abundance under hypoxia exposure impacted the molecular stability of tissue total tRNA-enriched fragments and isolated individual tRNAs, such as tRNAAla, tRNAval, tRNAGlu, and tRNALeu. In vitro transfection experiments showed that the transfection of testis total tRNA-enriched fragments from the hypoxia group into GC-2spd cells attenuated the cell proliferation rate and led to a reduction in overall nascent protein synthesis in cells. CONCLUSIONS: Our results reveal that the abundance of RNA modifications for different classes of RNAs under physiological conditions is tissue-specific and responds to hypobaric hypoxia exposure in a tissue-specific manner. Mechanistically, the dysregulation of tRNA modifications under hypobaric hypoxia attenuated the cell proliferation rate, facilitated the sensitivity of tRNA to RNases, and led to a reduction in overall nascent protein synthesis, suggesting an active role of tRNA epitranscriptome alteration in the adaptive response to environmental hypoxia exposure.


Assuntos
Hipóxia , Espectrometria de Massas em Tandem , Masculino , Camundongos , Animais , Cromatografia Líquida , Hipóxia/genética , Ribonuclease Pancreático , RNA de Transferência/genética , RNA
4.
Mol Hum Reprod ; 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959987

RESUMO

RNA modifications, which are introduced post-transcriptionally, have recently been assigned pivotal roles in the regulation of spermatogenesis and embryonic development. However, the RNA modification landscape in human sperm is poorly characterized, hampering our understanding about the potential role played by RNA modification in sperm. Through our recently developed high-throughput RNA modification detection platform based on liquid chromatography with tandem mass spectroscopy, we are the first to have characterized the RNA modification signature in human sperm. The RNA modification signature was generated on the basis of 49 samples from participants, including 13 healthy controls, 21 patients with asthenozoospermia (AZS) and 15 patients with teratozoospermia (TZS). In total, we identified 13 types of RNA modification marks on the total RNA in sperm, and 16 types of RNA modification marks on sperm RNA fragments of different sizes. The levels of these RNA modifications on the RNA of patients with AZS or TZS were altered, compared to controls, especially on sperm RNA fragments > 80 nt. A few types of RNA modifications, such as m1G, m5C, m2G and m1A, showed clear co-expression patterns as well as high linear correlations with clinical sperm motility. In conclusion, we characterized the RNA modification signature of human sperm and identified its correlation with sperm motility, providing promising candidates for use in clinical sperm quality assessment and new research insights for exploring the underlying pathological mechanisms in human male infertility syndromes.

5.
Front Mol Biosci ; 9: 871737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35775084

RESUMO

Hypoxia is a known stress factor in mammals and has been shown to potentially impair male fertility, which manifests as spermatogenic dysfunction and decreased semen quality. Studies have shown that RNA modifications, the novel post-transcriptional regulators, are involved in spermatogenesis, and hypoxia-induced alterations in RNA modification in testes and sperm cells may be associated with impaired spermatogenesis in mice. However, the molecular mechanisms via which RNA modifications influence spermatogenesis under hypoxic stress conditions are unclear. In this study, we generated a mouse Germ Cell-2 spermatid (GC-2spd) hypoxia model by culturing cells in a 1% O2 incubator for 48 h or treating them with CoCl2 for 24 h. The hypoxia treatment significantly inhibited proliferation and induced apoptosis in GC-2spd cells. The RNA modification signatures of total RNAs (2 types) and differentially sized RNA fragments (7 types of approximately 80 nt-sized tRNAs; 9 types of 17-50 nt-sized sncRNAs) were altered, and tRNA stability was partially affected. Moreover, the expression profiles of sncRNAs, such as microRNAs, tsRNAs, rsRNAs, and ysRNAs, were significantly regulated, and this might be related to the alterations in RNA modification and subsequent transcriptomic changes. We comprehensively analyzed alterations in RNA modification signatures in total RNAs, tRNAs (approximately 80 nt), and small RNAs (17-50 nt) as well as the expression profiles of sncRNAs and transcriptomes in hypoxia-treated GC-2spd cells; our data suggested that RNA modifications may be involved in cellular responses under hypoxic stress conditions and could provide a basis for a better understanding of the molecular mechanisms underlying male infertility.

6.
Biol Reprod ; 105(5): 1171-1178, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34296257

RESUMO

Hypobaric hypoxia as an extreme environment in a plateau may have deleterious effects on human health. Studies have indicated that rush entry into a plateau may reduce male fertility and manifest in decreased sperm counts and weakened sperm motility. RNA modifications are sensitive to environmental changes and have recently emerged as novel post-transcriptional regulators in male spermatogenesis and intergenerational epigenetic inheritance. In the present study, we generated a mouse hypoxia model simulating the environment of 5500 m in altitude for 35 days, which led to compromised spermatogenesis, decreased sperm counts, and an increased sperm deformation rate. Using this hypoxia model, we further applied our recently developed high-throughput RNA modification quantification platform based on liquid chromatography with tandem mass spectrometry, which exhibited the capacity to simultaneously examine 25 types of RNA modifications. Our results revealed an altered sperm RNA modifications signature in the testis (6 types) and mature sperm (11 types) under the hypoxia model, with 4 types showing overlap (Am, Gm, m7G, and m22G). Our data first drew the signature of RNA modification profiles and comprehensively analyzed the alteration of RNA modification levels in mouse testis and sperm under a mouse hypoxia model. These data may be highly related to human conditions under a similar hypoxia environment.


Assuntos
Hipóxia/metabolismo , RNA/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Cromatografia Líquida , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem
7.
Neural Netw ; 108: 399-410, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30273844

RESUMO

Restricted Boltzmann Machine (RBM) is the building block of Deep Belief Nets and other deep learning tools. Fast learning and prediction are both essential for practical usage of RBM-based machine learning techniques. This paper proposes Lean Contrastive Divergence (LCD), a modified Contrastive Divergence (CD) algorithm, to accelerate RBM learning and prediction without changing the results. LCD avoids most of the required computations with two optimization techniques. The first is called bounds-based filtering, which, through triangle inequality, replaces expensive calculations of many vector dot products with fast bounds calculations. The second is delta product, which effectively detects and avoids many repeated calculations in the core operation of RBM, Gibbs Sampling. The optimizations are applicable to both the standard contrastive divergence learning algorithm and its variations. In addition, this paper presents how to implement these optimizations effectively on massively parallel processors. Results show that the optimizations can produce several-fold (up to 3X for training and 5.3X for prediction) speedups.


Assuntos
Algoritmos , Aprendizado Profundo , Redes Neurais de Computação , Bases de Dados Factuais , Aprendizado Profundo/tendências , Aprendizado de Máquina/tendências , Fatores de Tempo
8.
BMB Rep ; 46(12): 575-81, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24355300

RESUMO

Lipid droplet (LD) is a cellular organelle that stores neutral lipids as a source of energy and carbon. However, recent research has emerged that the organelle is involved in lipid synthesis, transportation, and metabolism, as well as mediating cellular protein storage and degradation. With the exception of multi-cellular organisms, some unicellular microorganisms have been observed to contain LDs. The organelle has been isolated and characterized from numerous organisms. Triacylglycerol (TAG) accumulation in LDs can be in excess of 50% of the dry weight in some microorganisms, and a maximum of 87% in some instances. These microorganisms include eukaryotes such as yeast and green algae as well as prokaryotes such as bacteria. Some organisms obtain carbon from CO2 via photosynthesis, while the majority utilizes carbon from various types of biomass. Therefore, high TAG content generated by utilizing waste or cheap biomass, coupled with an efficient conversion rate, present these organisms as bio-tech 'factories' to produce biodiesel. This review summarizes LD research in these organisms and provides useful information for further LD biological research and microorganism biodiesel development.


Assuntos
Bactérias/metabolismo , Biocombustíveis , Clorófitas/metabolismo , Vesículas Citoplasmáticas/metabolismo , Saccharomyces cerevisiae/metabolismo , Biomassa , Metabolismo dos Lipídeos/fisiologia , Proteômica , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...