Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 10(10): 4453-4465, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292507

RESUMO

Organ ischemia reperfusion injury (IRI), associated with acute hepatocyte death, remains an unresolved problem in clinical orthotopic liver transplantation (OLT). Autophagy, an intracellular self-digesting progress, is responsible for cell reprograming required to regain post-stress homeostasis. Methods: Here, we analyzed the cytoprotective mechanism of pituitary adenylate cyclase-activating polypeptide (PACAP)-promoted hepatocellular autophagy in a clinically relevant mouse model of extended hepatic cold storage (4 °C UW solution for 20 h) followed by syngeneic OLT. Results: In contrast to 41.7% of liver graft failure by day 7 post-transplant in control group, PACAP treatment significantly improved graft survival (91.7% by day 14), and promoted autophagy-associated regeneration programs in OLT. In parallel in vitro studies, PACAP-enhanced autophagy ameliorated cellular damage (LDH/ALT levels), and diminished necrosis in H2O2-stressed primary hepatocytes. Interestingly, PACAP not only induced nuclear cAMP response element-binding protein (CREB), but also triggered reprogramming factor Kruppel-like factor 4 (KLF4) expression in IR-stressed OLT. Indeed, CREB inhibition attenuated hepatic autophagy and recreated hepatocellular injury in otherwise PACAP-protected livers. Furthermore, CREB inhibition suppressed PACAP-induced KLF4 expression, whereas KLF4 blockade abolished PACAP-promoted autophagy and neutralized PACAP-mediated hepatoprotection both in vivo and in vitro. Conclusion: Current study documents the essential neural regulation of PACAP-promoted autophagy in hepatocellular homeostasis in OLT, which provides the emerging therapeutic principle to combat hepatic IRI in OLT.


Assuntos
Autofagia/efeitos dos fármacos , Hepatócitos/citologia , Fígado/patologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Disfunção Primária do Enxerto/tratamento farmacológico , Traumatismo por Reperfusão , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hepatócitos/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/citologia , Transplante de Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Manejo de Espécimes
2.
Am J Transplant ; 15(4): 954-964, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25676534

RESUMO

Ischemia-reperfusion injury (IRI), an innate immunity-driven local inflammation, remains the major problem in clinical organ transplantation. T cell immunoglobulin and mucin domain (TIM-3)-Galectin-9 (Gal-9) signaling regulates CD4+ Th1 immune responses. Here, we explored TIM-3-Gal-9 function in a clinically relevant murine model of hepatic cold storage and orthotopic liver transplantation (OLT). C57BL/6 livers, preserved for 20 h at 4°C in UW solution, were transplanted to syngeneic mouse recipients. Up-regulation of TIM-3 on OLT-infiltrating activated CD4+ T cells was observed in the early IRI phase (1 h). By 6 h of reperfusion, OLTs in recipients treated with a blocking anti-TIM-3 Ab were characterized by: (1) enhanced hepatocellular damage (sALT levels, liver Suzuki's histological score); (2) polarized cell infiltrate towards Th1/Th17-type phenotype; (3) depressed T cell exhaustion markers (PD-1, LAG3); and (4) elevated neutrophil and macrophage infiltration/activation. In parallel studies, adoptive transfer of CD4+ T cells from naïve WT, but not from TIM-3 Tg donors, readily recreated OLT damage in otherwise IR-resistant RAG(-/-) test recipients. Furthermore, pre-treatment of mice with rGal-9 promoted hepatoprotection against preservation-association liver damage, accompanied by enhanced TIM-3 expression in OLTs. Thus, CD4+ T cell-dependent "negative" TIM-3 costimulation is essential for hepatic homeostasis and resistance against IR stress in OLTs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Temperatura Baixa , Transplante de Fígado , Receptores Virais/imunologia , Transdução de Sinais , Animais , Receptor Celular 2 do Vírus da Hepatite A , Camundongos , Camundongos Endogâmicos C57BL
3.
Transplantation ; 98(7): 721-8, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25171655

RESUMO

BACKGROUND: Nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the antioxidant host defense, maintains the cellular redox homeostasis. METHODS: This study was designed to investigate the role and molecular mechanisms by which Nrf2 regulates toll-like receptor (TLR)4-driven inflammation response in a mouse model of hepatic warm ischemia (90 min) and reperfusion (6 hr) injury (IRI). RESULTS: Activation of Nrf2 after preconditioning of wild-type mouse recipients with cobalt protoporphyrin ameliorated liver IRI, evidenced by improved hepatocellular function (serum alanine aminotransferase levels), and preserved tissue architecture (histology Suzuki's score). In marked contrast, ablation of Nrf2 signaling exacerbated IR-induced liver inflammation and damage in Nrf2 knockout hosts irrespective of adjunctive cobalt protoporphyrin treatment. The Nrf2 activation reduced macrophage and neutrophil trafficking, proinflammatory cytokine programs, and hepatocellular necrosis or apoptosis while increasing antiapoptotic functions in IR-stressed livers. At the molecular level, Nrf2 activation augmented heme oxygenase-1 expression and Stat3 phosphorylation and promoted PI3K-Akt while suppressing forkhead box O (Foxo)1 signaling. In contrast, Nrf2 deficiency diminished PI3K-Akt and enhanced Foxo1 expression in the ischemic livers. In parallel in vitro studies, Nrf2 knockdown in lipopolysaccharide-stimulated bone marrow-stimulated bone marrow-derived macrophages (BMMs) decreased heme oxygenase-1 and PI3K-Akt yet increased Foxo1 transcription, leading to enhanced expression of TLR4 proinflammatory mediators. Moreover, pretreatment of bone marrow-derived macrophages with PI3K inhibitor (LY294002) activated Foxo1 signaling, which in turn enhanced TLR4-driven innate responses in vitro. CONCLUSION: Activation of Nrf2 promoted PI3K-Akt, and inhibited Foxo1 activity in IR-triggered local inflammation response. By identifying a novel integrated Nrf2-Akt-Foxo1 signaling network in PI3K-dependent regulation of TLR4-driven innate immune activation, this study provides the rationale for refined therapeutic approaches to manage liver inflammation and IRI in transplant recipients.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose , Cromonas/química , Proteína Forkhead Box O1 , Homeostase , Inflamação , Lipopolissacarídeos/química , Fígado/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/química , Necrose , Neutrófilos/metabolismo , Oxirredução , Fosforilação , Protoporfirinas/química , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Isquemia Quente
4.
Hepatology ; 60(6): 2052-2064, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25066922

RESUMO

UNLABELLED: Hepatic ischemia-reperfusion injury (IRI), an innate immunity-driven inflammation response, occurs in multiple clinical settings including liver resection, transplantation, trauma, and shock. T-cell immunoglobulin and mucin (TIM)-4, the only TIM protein not expressed on T cells, is found on macrophages and dendritic cells. The regulatory function of macrophage TIM-4 in the engulfment of apoptotic/necrotic bodies in innate immunity-mediated disease states remains unknown. This study focuses on the putative role of TIM-4 signaling in a model of liver warm ischemia (90 minutes) and reperfusion. The ischemia insult triggered TIM-4 expression by stressed hepatocellular phosphatidylserine (PS) presentation, peaking at 6 hours of reperfusion, and coinciding with the maximal hepatocellular damage. TIM-4-deficient or wild-type WT mice treated with antagonistic TIM-4 monoclonal antibody (mAb) were resistant against liver IRI, evidenced by diminished serum alanine aminotransferase (sALT) levels and well-preserved hepatic architecture. Liver hepatoprotection rendered by TIM-4 deficiency was accompanied by diminished macrophage infiltration/chemoattraction, phagocytosis, and activation of Toll-like receptor (TLR)2/4/9-dependent signaling. Correlating with in vivo kinetics, the peak of TIM-4 induction in lipopolysaccharide (LPS)-activated bone marrow derived-macrophages (BMM) was detected in 6-hour cultures. To mimic liver IRI, we employed hydrogen peroxide-necrotic hepatocytes, which readily present PS. Indeed, necrotic hepatocytes were efficiently captured/engulfed by WT (TIM-4+) but not by TIM-4-deficient BMM. Finally, in a newly established model of liver IRI, adoptive transfer of WT but not TIM-4-deficient BMM readily recreated local inflammation response/hepatocellular damage in the CD11b-DTR mouse system. CONCLUSION: These findings document the importance of macrophage-specific TIM-4 activation in the mechanism of hepatic IRI. Macrophage TIM-4 may represent a therapeutic target to minimize innate inflammatory responses in IR-stressed organs.


Assuntos
Hepatopatias/imunologia , Macrófagos/fisiologia , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Traumatismo por Reperfusão/imunologia , Animais , Hepatócitos , Imunidade Inata , Ativação de Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Fagocitose
5.
Mol Med ; 20: 448-55, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25014792

RESUMO

Macrophages are instrumental in the pathophysiology of liver ischemia/reperfusion injury (IRI). Although Nrf2 regulates macrophage-specific heme oxygenase-1 (HO-1) antioxidant defense, it remains unknown whether HO-1 induction might rescue macrophage Nrf2-dependent antiinflammatory functions. This study explores the mechanisms by which the Nrf2-HO-1 axis regulates sterile hepatic inflammation responses after adoptive transfer of ex vivo modified HO-1 overexpressing bone marrow-derived macrophages (BMMs). Livers in Nrf2-deficient mice preconditioned with Ad-HO-1 BMMs, but not Ad-ß-Gal-BMMs, ameliorated liver IRI (at 6 h of reperfusion after 90 min of warm ischemia), evidenced by improved hepatocellular function (serum alanine aminotransferase [sALT] levels) and preserved hepatic architecture (Suzuki histological score). Treatment with Ad-HO-1 BMMs decreased neutrophil accumulation, proinflammatory mediators and hepatocellular necrosis/apoptosis in ischemic livers. Moreover, Ad-HO-1 transfection of Nrf2-deficient BMMs suppressed M1 (Nos2(+)) while promoting the M2 (Mrc-1/Arg-1(+)) phenotype. Unlike in controls, Ad-HO-1 BMMs increased the expression of Notch1, Hes1, phosphorylation of Stat3 and Akt in IR-stressed Nrf2-deficient livers as well as in lipopolysaccharide (LPS)-stimulated BMMs. Thus, adoptive transfer of ex vivo generated Ad-HO-1 BMMs rescued Nrf2-dependent antiinflammatory phenotype by promoting Notch1/Hes1/Stat3 signaling and reprogramming macrophages toward the M2 phenotype. These findings provide the rationale for a novel clinically attractive strategy to manage IR liver inflammation/damage.


Assuntos
Transferência Adotiva , Heme Oxigenase-1/metabolismo , Hepatopatias/terapia , Macrófagos , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/terapia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea/citologia , Diferenciação Celular , Heme Oxigenase-1/genética , Proteínas de Homeodomínio/metabolismo , Hepatopatias/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fenótipo , Receptor Notch1/metabolismo , Traumatismo por Reperfusão/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição HES-1
6.
J Hepatol ; 59(6): 1200-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23867319

RESUMO

BACKGROUND & AIMS: The Keap1-Nrf2 signaling pathway regulates host cell defense responses against oxidative stress and maintains the cellular redox balance. METHODS: We investigated the function/molecular mechanisms by which Keap1-Nrf2 complex may influence liver ischemia/reperfusion injury (IRI) in a mouse model of hepatic cold storage (20h at 4°C) followed by orthotopic liver transplantation (OLT). RESULTS: The Keap1 hepatocyte-specific knockout (HKO) in the donor liver ameliorated post-transplant IRI, evidenced by improved hepatocellular function and OLT outcomes (Keap1 HKO→Keap1 HKO; 100% survival), as compared with controls (WT→WT; 50% survival; p<0.01). By contrast, donor liver Nrf2 deficiency exacerbated IRI in transplant recipients (Nrf2 KO→Nrf2 KO; 40% survival). Ablation of Keap1 signaling reduced macrophage/neutrophil trafficking, pro-inflammatory cytokine programs, and hepatocellular necrosis/apoptosis, while simultaneously promoting anti-apoptotic functions in OLTs. At the molecular level, Keap1 HKO increased Nrf2 levels, stimulated Akt phosphorylation, and enhanced expression of anti-oxidant Trx1, HIF-1α, and HO-1. Pretreatment of liver donors with PI3K inhibitor (LY294002) disrupted Akt/HIF-1A signaling and recreated hepatocellular damage in otherwise IR-resistant Keap1 HKO transplants. In parallel in vitro studies, hydrogen peroxide-stressed Keap1-deficient hepatocytes were characterized by enhanced expression of Nrf2, Trx1, and Akt phosphorylation, in association with decreased release of lactate dehydrogenase (LDH) in cell culture supernatants. CONCLUSIONS: Keap1-Nrf2 complex prevents oxidative injury in IR-stressed OLTs through Keap1 signaling, which negatively regulates Nrf2 pathway. Activation of Nrf2 induces Trx1 and promotes PI3K/Akt, crucial for HIF-1α activity. HIF-1α-mediated overexpression of HO-1/Cyclin D1 facilitates cytoprotection by limiting hepatic inflammatory responses, and hepatocellular necrosis/apoptosis in a PI3K-dependent manner.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas do Citoesqueleto/fisiologia , Transplante de Fígado , Fígado/irrigação sanguínea , Fator 2 Relacionado a NF-E2/fisiologia , Traumatismo por Reperfusão/etiologia , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais
7.
Liver Transpl ; 19(9): 945-56, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23744729

RESUMO

Hepatic ischemia/reperfusion injury (IRI), an exogenous, antigen-independent, local inflammation response, occurs in multiple clinical settings, including liver transplantation, hepatic resection, trauma, and shock. The nervous system maintains extensive crosstalk with the immune system through neuropeptide and peptide hormone networks. This study examined the function and therapeutic potential of the vasoactive intestinal peptide (VIP) neuropeptide in a murine model of liver warm ischemia (90 minutes) followed by reperfusion. Liver ischemia/reperfusion (IR) triggered an induction of gene expression of intrinsic VIP; this peaked at 24 hours of reperfusion and coincided with a hepatic self-healing phase. Treatment with the VIP neuropeptide protected livers from IRI; this was evidenced by diminished serum alanine aminotransferase levels and well-preserved tissue architecture and was associated with elevated intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. The hepatocellular protection rendered by VIP was accompanied by diminished neutrophil/macrophage infiltration and activation, reduced hepatocyte necrosis/apoptosis, and increased hepatic interleukin-10 (IL-10) expression. Strikingly, PKA inhibition restored liver damage in otherwise IR-resistant VIP-treated mice. In vitro, VIP not only diminished macrophage tumor necrosis factor α/IL-6/IL-12 expression in a PKA-dependent manner but also prevented necrosis/apoptosis in primary mouse hepatocyte cultures. In conclusion, our findings document the importance of VIP neuropeptide-mediated cAMP-PKA signaling in hepatic homeostasis and cytoprotection in vivo. Because the enhancement of neural modulation differentially regulates local inflammation and prevents hepatocyte death, these results provide the rationale for novel approaches to managing liver IRI in transplant patients.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fígado/patologia , Traumatismo por Reperfusão/patologia , Peptídeo Intestinal Vasoativo/química , Animais , Apoptose , Caspase 3/metabolismo , Citometria de Fluxo/métodos , Hepatócitos/citologia , Hepatócitos/metabolismo , Homeostase , Sistema Imunitário , Inflamação , Interleucina-10/metabolismo , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Neutrófilos/citologia , Peroxidase/metabolismo , Fatores de Tempo
8.
Hepatology ; 58(1): 351-62, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23408710

RESUMO

UNLABELLED: Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), an adaptor protein for inflammasome receptors, is essential for inducing caspase-1 activation and the consequent secretion of interleukin-1ß (IL-1ß), which is associated with local inflammation during liver ischemia/reperfusion injury (IRI). However, little is known about the mechanisms by which the ASC/caspase-1/IL-1ß axis exerts its function in hepatic IRI. This study was designed to explore the functional roles and molecular mechanisms of ASC/caspase-1/IL-1ß signaling in the regulation of inflammatory responses in vitro and in vivo. With a partial lobar liver warm ischemia (90 minutes) model, ASC-deficient and wild-type mice (C57BL/6) were sacrificed at 6 hours of reperfusion. Separate animal cohorts were treated with an anti-IL-1ß antibody or control immunoglobulin G (10 mg/kg/day intraperitoneally). We found that ASC deficiency inhibited caspase-1/IL-1ß signaling and led to protection against liver ischemia/reperfusion (IR) damage, local enhancement of antiapoptotic functions, and down-regulation of high mobility group box 1 (HMGB1)-mediated, toll-like receptor 4 (TLR4)-driven inflammation. Interestingly, the treatment of ASC-deficient mice with recombinant HMGB1 re-created liver IRI. Moreover, neutralization of IL-1ß ameliorated the hepatocellular damage by inhibiting nuclear factor kappa B (NF-κB)/cyclooxygenase 2 signaling in IR-stressed livers. In parallel in vitro studies, the knockout of ASC in lipopolysaccharide-stimulated bone marrow-derived macrophages depressed HMGB1 activity via the p38 mitogen-activated protein kinase pathway and led to the inhibition of TLR4/NF-κB and ultimately the depression of proinflammatory cytokine programs. CONCLUSION: ASC-mediated caspase-1/IL-1ß signaling promotes HMGB1 to produce a TLR4-dependent inflammatory phenotype and leads to hepatocellular injury. Hence, ASC/caspase-1/IL-1ß signaling mediates the inflammatory response by triggering HMGB1 induction in hepatic IRI. Our findings provide a rationale for a novel therapeutic strategy for managing liver injury due to IR.


Assuntos
Caspase 1/fisiologia , Proteínas do Citoesqueleto/fisiologia , Proteína HMGB1/biossíntese , Interleucina-1beta/fisiologia , Traumatismo por Reperfusão/imunologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Proteínas do Citoesqueleto/deficiência , Fígado/lesões , Masculino , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/fisiologia
9.
Hepatology ; 57(3): 1225-37, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22532103

RESUMO

UNLABELLED: Hepatic ischemia and reperfusion injury (IRI), an exogenous antigen-independent local inflammation response, occurs in multiple clinical settings, including liver transplantation, hepatic resection, trauma, and shock. The immune system and the nervous system maintain extensive communication and mount a variety of integrated responses to danger signals through intricate chemical messengers. This study examined the function and potential therapeutic potential of neuropeptide pituitary adenylate cyclase-activating polypeptides (PACAP) in a murine model of partial liver "warm" ischemia (90 minutes) followed by reperfusion. Liver IRI readily triggered the expression of intrinsic PACAP and its receptors, whereas the hepatocellular damage was exacerbated in PACAP-deficient mice. Conversely, PACAP27, or PACAP38 peptide monotherapy, which elevates intracellular cyclic adenosine monophosphate/protein kinase A (cAMP-PKA) signaling, protected livers from IRI, as evidenced by diminished serum alanine aminotransferase levels and well-preserved tissue architecture. The liver protection rendered by PACAP peptides was accompanied by diminished neutrophil/macrophage infiltration and activation, reduced hepatocyte necrosis/apoptosis, and selectively augmented hepatic interleukin (IL)-10 expression. Strikingly, PKA inhibition readily restored liver damage in otherwise IR-resistant, PACAP-conditioned mice. In vitro, PACAP treatment not only diminished macrophage tumor necrosis factor alpha/IL-6/IL-12 levels in a PKA-dependent manner, but also prevented necrosis and apoptosis in primary mouse hepatocyte cultures. CONCLUSION: Our novel findings document the importance of PACAP-mediated cAMP-PKA signaling in hepatic homeostasis and cytoprotection in vivo. Because the enhancement of neural modulation differentially regulates local inflammation and prevents hepatocyte death, these results provide the rationale for novel approaches to manage liver inflammation and IRI in transplant patients.


Assuntos
Fatores Imunológicos/metabolismo , Hepatopatias/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/imunologia , Animais , Apoptose/imunologia , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Homeostase/imunologia , Fatores Imunológicos/imunologia , Hepatopatias/imunologia , Hepatopatias/patologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/imunologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
10.
Hepatology ; 57(3): 1203-14, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23081841

RESUMO

UNLABELLED: Dendritic cells (DCs) are critical mediators of immune responses that integrate signals from the innate immune system to orchestrate adaptive host immunity. This study was designed to investigate the role and molecular mechanisms of STAT3-induced ß-catenin in the regulation of DC function and inflammatory responses in vitro and in vivo. STAT3 induction in lipopolysaccharide (LPS)-stimulated mouse bone marrow-derived DCs (BMDCs) triggered ß-catenin activation by way of GSK-3ß phosphorylation. The activation of ß-catenin inhibited phosphatase and tensin homolog delete on chromosome 10 (PTEN) and promoted the phosphoinositide 3-kinase (PI3K)/Akt pathway, which in turn down-regulated DC maturation and function. In contrast, knockdown of ß-catenin increased PTEN/TLR4 (Toll-like receptor 4), interferon regulatory factor-3 (IRF3), nuclear factor kappa B (NF-κB) activity, and proinflammatory cytokine programs in response to LPS stimulation. In a mouse model of warm liver ischemia and reperfusion injury (IRI), disruption of ß-catenin signaling increased the hepatocellular damage, enhanced hepatic DC maturation/function, and PTEN/TLR4 local inflammation in vivo. CONCLUSION: These findings underscore the role of ß-catenin to modulate DC maturation and function at the innate-adaptive interface. Activation of ß-catenin triggered PI3K/Akt, which in turn inhibited TLR4-driven inflammatory response in a negative feedback regulatory mechanism. By identifying the molecular pathways by which ß-catenin regulates DC function, our findings provide the rationale for novel therapeutic approaches to manage local inflammation and injury in IR-stressed liver.


Assuntos
Imunidade Adaptativa/fisiologia , Células Dendríticas/imunologia , Imunidade Inata/fisiologia , Hepatopatias/imunologia , Traumatismo por Reperfusão/imunologia , beta Catenina/imunologia , Animais , Apoptose/imunologia , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/imunologia , PTEN Fosfo-Hidrolase/metabolismo , RNA Interferente Pequeno/genética , Traumatismo por Reperfusão/metabolismo , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
11.
Surgery ; 152(5): 843-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22575884

RESUMO

BACKGROUND: Antithymocyte therapy, specifically antithymocyte globulin (ATG; Thymoglobulin), is increasingly being used in organ transplantation to reduce allograft rejection. The T-lymphocyte has been purported to also play a role in ischemia and reperfusion injury (IRI); however, it has not been well studied. Our aim is to determine if ATG treatment impacts murine intestinal IRI. METHODS: Under anesthesia, male C57BL6 mice underwent 100 minutes of warm intestinal IRI by clamping the superior mesenteric artery. The treatment group received rabbit anti-murine ATG (10 mg/kg) intraperitoneally 6 hours before IRI. Separate survival and analysis groups were performed. Intestinal tissue was procured at 4 and 24 hours after IRI. Tissue analysis included hematoxylin-eosin staining, CD3, CD4, and CD8 immunostaining, myeloperoxidase assay (MPO), quantitative real-time polymerase chain reaction studies, and Western blot. RESULTS: ATG treatment led to marked improvement in 7-day survival and a reduction in tissue injury by histology. MPO was also reduced, and immunostaining confirmed a significant reduction in CD3(+), CD4(+), and CD8(+) infiltrating cells in the treatment group. Quantitative real-time polymerase chain reaction analysis revealed the decreased expression of tumor necrosis factor-α, interferon-inducible protein 10, monocyte chemotactic protein-1, interferon-γ, interleukin-2, and increased production of interleukins -13 and -10 in the treatment group. Western blot analysis revealed decreased caspase-3 and increased signal transducer and activator of transcription 6 levels in the ATG-treated group. CONCLUSION: This study is the first to show that ATG treatment ameliorates intestinal IRI. Treatment with ATG leads to reduced local infiltration by T-lymphocytes, with fewer inflammatory and chemotactic programs and less apoptosis. Treatment also is associated with a T(H)2-type cytokine switch. These novel findings suggest that T-lymphocytes represent important mediators of intestinal IRI and that ATG therapies may be beneficial in the prevention of IRI.


Assuntos
Soro Antilinfocitário/uso terapêutico , Enteropatias/prevenção & controle , Intestinos/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Animais , Antígenos CD/metabolismo , Western Blotting , Enteropatias/patologia , Mucosa Intestinal/metabolismo , Intestinos/patologia , Intestinos/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/patologia
12.
Liver Transpl ; 18(6): 659-70, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22290937

RESUMO

Hepatic ischemia/reperfusion injury (IRI) occurs in multiple clinical settings, including liver transplantation. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway inhibits hepatocellular apoptosis and regulates toll-like receptor 4-triggered inflammation responses in vitro. Here we examined the function and therapeutic potential of cAMP-PKA activation in a murine (C57/BL6) model of liver warm ischemia (90 minutes) followed by reperfusion. Liver IRI triggered cAMP-PKA activation, whereas the administration of its specific inhibitor, H89, exacerbated hepatocellular damage. Conversely, forskolin therapy, which activates PKA by elevating cAMP levels, protected livers from IRI; this was evidenced by diminished serum alanine aminotransferase levels and well-preserved tissue architecture. Liver protection due to cAMP-PKA stimulation was accompanied by diminished neutrophil and macrophage infiltration/activation, reduced hepatocyte necrosis/apoptosis, and increased cAMP response element-binding protein (CREB) expression and augmented interleukin-10 (IL-10) expression. The neutralization of IL-10 restored liver damage in otherwise ischemia/reperfusion-resistant, forskolin-treated mice. In vitro, cAMP-PKA activation diminished macrophage tumor necrosis factor α, IL-6, and IL-12 in an IL-10-dependent manner and prevented necrosis/apoptosis in primary mouse hepatocyte cultures. Our novel findings in a mouse model of liver IRI document the importance of cAMP-PKA signaling in hepatic homeostasis and cytoprotection in vivo. The activation of cAMP-PKA signaling differentially regulates local inflammation and prevents hepatocyte death, and this provides a rationale for novel therapeutic approaches to combating liver IRI in transplant recipients.


Assuntos
Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transplante de Fígado , Traumatismo por Reperfusão , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Interleucina-10/metabolismo , Isoquinolinas/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo , Necrose/patologia , Necrose/prevenção & controle , Peroxidase/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais/fisiologia , Sulfonamidas/farmacologia , Temperatura
13.
J Hepatol ; 56(2): 359-66, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21756853

RESUMO

BACKGROUND & AIMS: Signal transducer and activator of transcription 3 (STAT3), a key mediator of anti-inflammatory cytokine signaling, is essential for heme oxygenase-1 (HO-1)-induced cytoprotection. The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog delete on chromosome 10 (PTEN) pathways regulate diverse innate immune responses. This study was designed to investigate the role of STAT3 in the regulation of PI3K/PTEN cascade after HO-1 induction in a mouse model of innate immune-dominated liver ischemia/reperfusion injury (IRI). METHODS: Partial warm ischemia was produced in the left and middle hepatic lobes of C57BL/6 mice for 90 min, followed by 6h of reperfusion. RESULTS: Mice subjected to Ad-HO-1 transfer were resistant to liver IRI, and this cytoprotective effect correlated with increased intrahepatic PI3K/Akt and diminished PTEN expression. In contrast, mice undergoing adjunctive Ad-HO-1 treatment and STAT3 knockdown (siRNA) remained susceptible to IR-mediated local inflammatory response and hepatocellular damage. Consistent with decreased cell apoptosis and inhibited TLR4 expression after PI3K/Akt activation, treatment with specific PI3k inhibitor increased local inflammation and recreated liver IRI despite Ad-HO-1 gene transfer. Parallel in vitro studies with bone marrow derived-macrophages have confirmed that HO-1-STAT3 axis-induced PI3K/Akt negatively regulated PTEN expression in TLR4-dependent fashion. CONCLUSIONS: These findings underscore the role of HO-1 induced STAT3 in modulating PI3K/PTEN in liver IRI cascade. Activating PI3K/Akt provides negative feedback mechanism for TLR4-driven inflammation. Identifying molecular pathways of STAT3 modulation in the innate immune system provides the rationale for novel therapeutic approaches for the management of liver inflammation and IRI in transplant patients.


Assuntos
Heme Oxigenase-1/metabolismo , Imunidade Inata , Fígado/lesões , Proteínas de Membrana/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Sequência de Bases , Modelos Animais de Doenças , Heme Oxigenase-1/genética , Humanos , Fígado/imunologia , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Traumatismo por Reperfusão/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais
14.
Transplantation ; 91(10): 1075-81, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21427633

RESUMO

BACKGROUND: The sensitized patients can develop an accelerated form of graft rejection mediated by humoral and T-cell-mediated responses, which are resistant to currently used immunosuppression. METHODS AND RESULTS: In our model of fulminant cardiac allograft rejection in sensitized hosts, groups of wild-type (WT) and B-cell-deficient (BKO) mice (B6) were challenged with skin grafts (B/c). Alloreactive CD8 T effector (Teff) activation and T memory (Tmem) differentiation during a 60-day follow-up period were reduced in the absence of B-cell help. The expression of interleukin (IL)-2Rα, IL-7Rα, and IL-15Rα, which support/program CD8 Teff/Tmem expansion, differentiation, and survival, were selectively decreased in BKO hosts. Unlike in WT, in vivo cytotoxic activity analysis of alloreactive Tmem recall response has revealed decreased donor-type (B/c) but not third-party (C3H) cell lysis in sensitized BKO hosts. However, such impaired allo-Ag specific Tmem recall function was insufficient to markedly prolong cardiac allograft survival in sensitized BKO recipients. Indeed, despite quantitative and statistically significant differences between both animal groups, the biological impact of decreased CD8 Teff/Tmem activation and function in the sensitization phase was marginal. Indeed, cardiac allografts underwent fulminant rejection in sensitized BKO, albeit with somewhat delayed kinetics. Interestingly, unlike in naïve counterparts, the rejection cascade remained CD154 blockade-resistant, evidenced by comparable kinetics, and intra-graft cytokine gene profiles in MR1 monoclonal antibody-treated sensitized WT and BKO hosts. CONCLUSION: Although B cells were important for optimal alloreactive CD8 Teff/Tmem function in the sensitization phase, the fulminant rejection of cardiac allografts was B-cell-independent, and CD154 blockade-resistant, as in WT hosts.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto , Transplante de Coração/imunologia , Memória Imunológica , Transplante de Pele/imunologia , Animais , Ligante de CD40/metabolismo , Diferenciação Celular , Citocinas/genética , Citocinas/metabolismo , Citotoxicidade Imunológica , Imunoglobulina M/deficiência , Imunoglobulina M/genética , Cadeias mu de Imunoglobulina/genética , Cadeias mu de Imunoglobulina/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/metabolismo , Fatores de Tempo , Transplante Homólogo
15.
Transplantation ; 91(7): 737-43, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21311412

RESUMO

BACKGROUND: Ischemia-reperfusion (I/R) injury is a major factor leading to intestinal dysfunction or graft loss after intestinal surgery or transplantation. This study investigated the cytoprotective effects and putative mechanisms of interleukin (IL)-13 after intestinal I/R injury in the mouse. METHODS: Mouse warm intestinal I/R injury induced by clamping the superior mesenteric artery for 100 min with tissue analysis at 4 and 24 hr after reperfusion. Treated animals received intravenous recombinant murine IL-13 (rIL-13) and anti-IL-13 antibody, whereas controls received saline. RESULTS: rIL-13 administration markedly prolonged animal survival (100% vs. 50% in saline controls) and resulted in near normal histopathological architecture. rIL-13 treatment also significantly decreased myeloperoxidase activity. Mice conditioned with rIL-13 had a markedly depressed Toll-like receptor-4 expression and increased the expression of Stat6, antioxidant hemeoxygenase-1, and antiapoptotic A20, Bcl-2/Bcl-xl, compared with that of controls. Unlike in controls, the expression of mRNA coding for IL-2/interferon-γ, and interferon-γ-inducible protein (IP)-10/monocyte chemotactic protein-1 remained depressed, whereas that of IL-13/IL-4 reciprocally increased in the mice treated with rIL-13. Administration of anti-IL13 antibody alone or in combination with rIL-13 resulted in outcomes similar to that seen in controls. CONCLUSIONS: This study demonstrates for the first time that IL-13 plays a protective role in intestinal warm I/R injury and a critical role in the regulation of Stat6 and Toll-like receptor-4 signaling. The administration of IL-13 exerts cytoprotective effects in this model by regulating innate and adaptive immunity while the removal of IL-13 using antibody therapy abrogates this effect.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Interleucina-13/farmacologia , Intestinos/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Animais , Citoproteção , Interleucina-13/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT6/fisiologia , Receptor 4 Toll-Like/fisiologia
16.
Liver Transpl ; 17(2): 201-10, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280193

RESUMO

We investigated whether native macrophages overexpressing heme oxygenase 1 (HO-1) could protect rat orthotopic liver transplant (OLT) against cold ischemia/reperfusion injury (IRI). Livers from Sprague-Dawley rats were stored at 4°C in University of Wisconsin solution for 24 hours, and then they were transplanted into syngeneic recipients. Bone marrow-derived macrophages (BMMs) that were transfected ex vivo with heme oxygenase 1 adenovirus (Ad-HO-1), ß-galactosidase adenovirus (Ad-ß-gal), or HO-1 small interfering RNA (siRNA) were infused directly into the OLT before reperfusion. Controls were OLT conditioned with unmodified or scrambled siRNA-transfected cells. The transfer of Ad-HO-1/BMMs increased the survival of OLT to 100% (versus 40%-50% for controls) and decreased serum alanine aminotransferase levels and histological features of hepatocellular damage. In contrast, an infusion of macrophages transfected with HO-1 siRNA/Ad-ß-gal failed to affect IRI. Gene therapy-induced HO-1 suppressed toll-like receptor 4 expression, decreased expression of proinflammatory tumor necrosis factor α, interleukin-1ß, monocyte chemoattractant protein 1, and chemokine (C-X-C motif) ligand 10, and attenuated endothelial intercellular cell adhesion molecule 1 expression with resultant diminished OLT leukocyte sequestration. Although Ad-HO-1/BMMs decreased the frequency of apoptotic cells positive for terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and ameliorated caspase-3 activity, the expression of interleukin-10 and antiapoptotic B cell lymphoma 2/B cell lymphoma extra large increased in well-functioning OLT. Thus, the transfer of native macrophages transfected ex vivo with HO-1 can rescue rat iso-OLT from IRI. Our study validates a novel and clinically attractive concept: native macrophages transfected ex vivo with the antioxidant HO-1 can be applied at the time of transplantation to mitigate otherwise damaging antigen-independent liver inflammation and injury resulting from the peritransplant harvesting insult. If this new, refined strategy is proven to be effective in allo-OLT recipients, it should be considered in clinical settings to increase the supply of usable donor organs and ultimately improve the overall success of liver transplantation.


Assuntos
Isquemia Fria/efeitos adversos , Sobrevivência de Enxerto , Heme Oxigenase-1/metabolismo , Transplante de Fígado/efeitos adversos , Fígado/cirurgia , Macrófagos/transplante , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose , Caspase 3/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiotaxia de Leucócito , Citocinas/metabolismo , Heme Oxigenase-1/genética , Mediadores da Inflamação/metabolismo , Fígado/enzimologia , Fígado/imunologia , Fígado/patologia , Macrófagos/enzimologia , Masculino , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo , Transfecção , Transplante Isogênico
17.
Transpl Immunol ; 24(4): 203-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21251981

RESUMO

Conventional immunosuppressive therapies failed to prevent allograft chronic rejection. New approaches to modulate recipient immune response are needed. Donor-like MHC class I soluble proteins demonstrated therapeutic potential to suppress chronic rejection. The present study was designed to clarify the ability of MHC class I soluble proteins to induce T regulatory cells with true regulatory potential in a fully allogeneic rat cardiac transplant model. Donor-like MHC class I proteins upregulate small population of splenic CD8(-) negative CD4(+)CD25(+)FoxP3(+) positive cells. CD4(+) splenocytes after MHC therapy suppress lymphocyte proliferation against donor antigens in vitro. ACI recipients of WF hearts treated with CD4(+) cells, induced with donor-like MHC class I proteins (CD4-MHC), demonstrated stable survival of the transplanted organ (MST >120 days; n=17). Histology revealed that grafts of recipients treated with CD4-MHC had 23.6% vessels affected 100 days postgrafting. On the contrary, hearts obtained from long-term surviving hosts treated with CD4(+) cells induced with high-dose CsA (CD4-CsA) had 50-70% of affected vessels. CD4-MHC class I treated transplants were mostly CD3(-) negative, had low level of mast and FoxP3(+) cell infiltration compared to CD4-CsA treated hearts. Intragraft CD4(+) cells were close to mast cells in morphology. The same graft tissues had similar number of CD4(+) positive cells and mast cells suggesting existence of CD4(+) positive mast cells. On the other hand, a negligible number of FoxP3(+) positive cells in the grafts after CD4-MHC treatment supports the idea of CD4(+) positive FoxP3(+) negative mast cells population. We demonstrate that donor-like MHC class I protein therapy induces population of CD4(+)CD25(+)CD8(-)FoxP3(+) cells with potential to ameliorate development of transplant vascular disease and evoke CD4(+) positive FoxP3 negative mast cells in the secondary hosts.


Assuntos
Transplante de Coração , Antígenos de Histocompatibilidade Classe I/administração & dosagem , Imunoterapia , Mastócitos/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Antígenos CD/biossíntese , Células Cultivadas , Doença Crônica , Fatores de Transcrição Forkhead , Rejeição de Enxerto/prevenção & controle , Ativação Linfocitária/efeitos dos fármacos , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/patologia , Ratos , Ratos Endogâmicos WF , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
18.
J Heart Lung Transplant ; 29(3): 335-41, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20080050

RESUMO

BACKGROUND: The understanding of chronic rejection (transplant vascular sclerosis, or TVS) mechanisms is a major goal of transplantation. In this study we tested a cardiac transplant model for TVS development in connection with emerging T-regulatory cells (T-regs). We used 40-mer peptides derived from the donor MHC Class I alpha1 helix of the alpha1-domain to make recipients tolerant. METHODS: ACI recipients were transplanted with either RT1.A(u) (WF), RT1.A(l) (LEW), RT1.A(c) (PVG), or RT1.A(b) (BUF) cardiac grafts. The grafts were analyzed 120 days later for TVS and development of T-regs. RESULTS: Donor MHC peptides were injected through the portal vein (0.1 mg) into ACI recipients of WF hearts in addition to sub-therapeutic cyclosporine (CsA, 10 mg/kg for 3 days post-operatively). Peptide treatment specifically prolonged graft survival for >100 days (n = 31). ACI recipients of WF or LEW hearts treated with PVG peptides promptly rejected the transplanted grafts (15 +/- 4 and 20 +/- 1 days, respectively). Presence of T-regs in tolerant recipients was confirmed by the adoptive transfer of T cells into a new cohort of syngeneic recipients (mean survival time [MST] >100 days, n = 3). CD4(+) and FoxP3(+) cells were detected in 70% of the chronically rejected grafts vs 38% (CD4) and 22% (FoxP3) in the well-preserved transplants. IgG and IgM deposits were found in only half of surviving cardiac grafts with a high level of TVS. Blood vessels in grafts with attenuated TVS were 80% IgG and IgM positive. Interleukin (IL)-4 and IL-2 were markedly down-regulated in the hearts with high TVS compared with well-preserved grafts. Long-term-surviving hearts demonstrated increased IL-10 expression. Interferon-gamma (IFN-gamma) was more evident in the grafts with a high TVS. CONCLUSIONS: Donor MHC Class I peptides can specifically prolong transplant survival and generate T-regs. The level of intragraft T-regs correlates with severity of TVS and IL-2/IL-4 down-regulation.


Assuntos
Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Transplante de Coração/imunologia , Transplante de Coração/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Movimento Celular/imunologia , Fatores de Transcrição Forkhead/metabolismo , Rejeição de Enxerto/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Masculino , Modelos Animais , Ratos , Ratos Endogâmicos ACI , Ratos Endogâmicos BUF , Ratos Endogâmicos Lew , Ratos Endogâmicos WF , Linfócitos T Reguladores/metabolismo , Tolerância ao Transplante/imunologia , Transplante Homólogo
19.
Mol Ther ; 18(5): 1019-25, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20029397

RESUMO

Macrophages play a critical role in the pathophysiology of liver ischemia and reperfusion (IR) injury (IRI). However, macrophages that overexpress antioxidant heme oxygenase-1 (HO-1) may exert profound anti-inflammatory functions. This study explores the cytoprotective effects and mechanisms of ex vivo modified HO-1-expressing bone marrow-derived macrophages (BMDMs) in well-defined mouse model of liver warm ischemia followed by reperfusion. Adoptive transfer of Ad-HO-1-transduced macrophages prevented IR-induced hepatocellular damage, as evidenced by depressed serum glutamic-oxaloacetic transaminase (sGOT) levels and preserved liver histology (Suzuki scores), compared to Ad-beta-gal controls. This beneficial effect was reversed following concomitant treatment with HO-1 siRNA. Ad-HO-1-transfected macrophages significantly decreased local neutrophil accumulation, TNF-alpha/IL-1beta, IFN-gamma/E-selectin, and IP-10/MCP-1 expression, caspase-3 activity, and the frequency of apoptotic cells, as compared with controls. Unlike in controls, Ad-HO-1-transfected macrophages markedly increased hepatic expression of antiapoptotic Bcl-2/Bcl-xl and depressed caspase-3 activity. These results establish the precedent for a novel investigative tool and provide the rationale for a clinically attractive new strategy in which native macrophages can be transfected ex vivo with cytoprotective HO-1 and then infused, if needed, to prospective recipients exposed to hepatic IR-mediated local inflammation, such as during liver transplantation, resection, or trauma.


Assuntos
Heme Oxigenase-1/metabolismo , Fígado/metabolismo , Fígado/patologia , Macrófagos/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Western Blotting , Caspase 3/metabolismo , Linhagem Celular , Células Cultivadas , Quimiocina CCL2/metabolismo , Selectina E/metabolismo , Heme Oxigenase-1/genética , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirimidinonas/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiazóis/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
PLoS One ; 4(6): e6076, 2009 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-19562081

RESUMO

BACKGROUND: Allograft tolerance of ACI (RT1(a)) recipients to WF (RT1(u)) hearts can be induced by allochimeric class I MHC molecules containing donor-type (RT1A(u)) immunogenic epitopes displayed on recipient-type (RT1A(a)) sequences. Here, we sought the mechanisms by which allochimeric sequences may affect responding T cells through T cell receptor (TCA) repertoire restriction. METHODOLOGY/PRINCIPAL FINDINGS: The soluble [alpha(1h) (u)]-RT1.A(a) allochimeric molecule was delivered into ACI recipients of WF hearts in the presence of sub-therapeutic dose of cyclosporine (CsA). The TCR Vbeta spectrotyping of the splenocytes and cardiac allografts showed that the Vbeta gene families were differentially expressed within the TCR repertoire in allochimeric- or high-dose CsA-treated tolerant recipients at day +5 and +7 of post-transplantation. However, at day 30 of post-transplantation the allochimeric molecule-treated rats showed the restriction of TCR repertoire with altered dominant size peaks representing preferential clonal expansion of Vbeta7, Vbeta11, Vbeta13, Vbeta 14, and Vbeta15 genes. Moreover, we found a positive correlation between the alteration of Vbeta profile, restriction of TCR repertoire, and the establishment of allograft tolerance. CONCLUSIONS: Our findings indicate that presentation of allochimeric MHC class I sequences that partially mimic donor and recipient epitopes may induce unique tolerant state by selecting alloresponsive Vbeta genes.


Assuntos
Transplante de Células/métodos , Genes MHC Classe I , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Algoritmos , Animais , Epitopos/química , Tolerância Imunológica , Sinapses Imunológicas , Masculino , Modelos Biológicos , Mutagênese Sítio-Dirigida , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...