Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 19(1): 341, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849922

RESUMO

BACKGROUND: Percutaneous endoscopic lumbar discectomy (PELD) has demonstrated efficacy in alleviating leg pain among patients with lumbar disc herniation. Nonetheless, residual back pain persists as a troubling issue for surgeons following the procedure. In the treatment of discogenic back pain, sinuvertebral nerve radiofrequency ablation has shown promising results. Nevertheless, the potential benefit of simultaneously implementing sinuvertebral nerve radiofrequency ablation during PELD surgery to address residual back pain has not been thoroughly investigated in current literature. METHODS: This retrospective study reviewed Lumbar disc herniation (LDH) patients with low back pain who underwent combined PELD and sinuvertebral nerve ablation in our department between January 2021 and September 2023. Residual low back pain post-surgery was assessed and compared with existing literature. RESULTS: A total of 80 patients, including 53 males and 27 females, were included in the study. Following surgical intervention, patients demonstrated remarkable improvements in pain and functional parameters. One month post-operatively, the VAS score for low back pain exhibited a 75% reduction (6.45 ± 1.3 to 1.61 ± 1.67), while the VAS score for leg pain decreased by 85% (7.89 ± 1.15 to 1.18 ± 1.26). Notably, the JOA score increased from 12.89 ± 5.48 to 25.35 ± 4.96, and the ODI score decreased form 59.48 ± 9.58 to 20.3 ± 5.37. These improvements were sustained at three months post-operatively. According to the modified Mac Nab criteria, the excellent and good rate was 88.75%. Residual low back pain is observed to be comparatively reduced compared to the findings documented in earlier literature. CONCLUSION: The combination of percutaneous endoscopic lumbar discectomy and sinuvertebral nerve ablation demonstrates effective improvement in low back pain for LDH patients.


Assuntos
Discotomia Percutânea , Endoscopia , Deslocamento do Disco Intervertebral , Dor Lombar , Vértebras Lombares , Humanos , Feminino , Masculino , Deslocamento do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/complicações , Dor Lombar/etiologia , Dor Lombar/cirurgia , Discotomia Percutânea/métodos , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Vértebras Lombares/cirurgia , Endoscopia/métodos , Resultado do Tratamento
2.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314842

RESUMO

This study aimed to perform a mechanical analysis of adjacent segments after spinal fusion surgery using a geometrically parametric patient-specific finite element model to elucidate the mechanism of adjacent segment degeneration (ASD), thereby providing theoretical evidence for early disease prevention. Fourteen parameters based on patient-specific spinal geometry were extracted from a patient's preoperative computed tomography (CT) scan, and the relative positions of each spinal segment were determined using the image match method. A preoperative patient-specific model of the spine was established through the above method. The postoperative model after L4-L5 posterior lumbar interbody fusion (PLIF) surgery was constructed using the same method except that the lamina and intervertebral disc were removed, and a cage, 4 pedicle screws, and 2 connecting rods were inserted. Range of motion (ROM) and stress changes were determined by comparing the values of each anatomical structure between the preoperative and postoperative models. The overall ROM of the lumbar spine decreased after fusion, while the ROM, stress in the facet joints, and stress in the intervertebral disc of adjacent segments all increased. An analysis of the stress distribution in the annulus fibrosus, nucleus pulposus, and facet joints also showed that not only was the maximum stress in these tissues elevated, but the areas of moderate-to-high stress were also expanded. During torsion, the stress in the facet joints and annulus fibrosus of the proximal adjacent segment (L3-L4) increased to a larger extent than that in the distal adjacent segment (L5-S1). While fusion surgery causes an overall restriction of motion in the lumbar spine, it also causes more load sharing by the adjacent segments to compensate for the fused segment, thus increasing the risk of ASD. The proximal adjacent segment is more prone to degeneration than the distal adjacent segment after spinal fusion due to the significant increase in stress.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Fusão Vertebral , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/cirurgia , Fusão Vertebral/métodos , Análise de Elementos Finitos , Fenômenos Biomecânicos , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/cirurgia , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...